
Richard E. Neapolitan
Xia Jiang

With an Introduction to Machine Learning

Artificial Intelligence

SECOND EDITION

and the CRC Press Web site at
http://www.crcpress.com

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

International Standard Book Number-13: 978-1-138-50238-3 (Hardback)

© 2018 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

Version Date: 20180209

i i

Contents

Preface xi

1 Introduction to Artificial Intelligence 1
1.1 History of Artificial Intelligence . 2

1.1.1 What Is Artificial Intelligence? . 2
1.1.2 Emergence of AI . 4
1.1.3 Cognitive Science and AI . 4
1.1.4 Logical Approach to AI . 4
1.1.5 Knowledge-Based Systems . 5
1.1.6 Probabilistic Approach to AI . 6
1.1.7 Evolutionary Computation and Swarm Intelligence 6
1.1.8 Neural Networks & Deep Learning . 7
1.1.9 A Return to Creating HAL . 7

1.2 Outline of This Book . 7

I Logical Intelligence 9

2 Propositional Logic 11
2.1 Basics of Propositional Logic . 12

2.1.1 Syntax . 12
2.1.2 Semantics . 13
2.1.3 Tautologies and Logical Implication 17
2.1.4 Logical Arguments . 18
2.1.5 Derivation Systems . 21

2.2 Resolution . 24
2.2.1 Normal Forms . 25
2.2.2 Derivations Using Resolution . 26
2.2.3 Resolution Algorithm . 30

2.3 Artificial Intelligence Applications . 30
2.3.1 Knowledge-Based Systems . 30
2.3.2 Wumpus World . 41

2.4 Discussion and Further Reading . 48

3 First-Order Logic 53
3.1 Basics of First-Order Logic . 53

3.1.1 Syntax . 54
3.1.2 Semantics . 56

i i

3.1.3 Validity and Logical Implication . 60
3.1.4 Derivation Systems . 62
3.1.5 Modus Ponens for First-Order Logic 65

3.2 Artificial Intelligence Applications . 68
3.2.1 Wumpus World Revisited . 69
3.2.2 Planning . 69

3.3 Discussion and Further Reading . 73

4 Certain Knowledge Representation 77
4.1 Taxonomic Knowledge . 78

4.1.1 Semantic Nets . 78
4.1.2 Model of Human Organization of Knowledge 79

4.2 Frames . 80
4.2.1 Frame Data Structure . 80
4.2.2 Planning a Trip Using Frames . 81

4.3 Nonmonotonic Logic . 84
4.3.1 Circumscription . 84
4.3.2 Default Logic . 85
4.3.3 Difficulties . 86

4.4 Discussion and Further Reading . 86

5 Learning Deterministic Models 89
5.1 Supervised Learning . 89
5.2 Regression . 90

5.2.1 Simple Linear Regression . 91
5.2.2 Multiple Linear Regression . 93
5.2.3 Overfitting and Cross Validation . 94

5.3 Parameter Estimation . 96
5.3.1 Estimating the Parameters for Simple Linear Regression 96
5.3.2 Gradient Descent . 98
5.3.3 Logistic Regression and Gradient Descent 100
5.3.4 Stochastic Gradient Descent . 101

5.4 Learning a Decision Tree . 102
5.4.1 Information Theory . 102
5.4.2 Information Gain and the ID3 Algorithm 106
5.4.3 Overfitting . 108

II Probabilistic Intelligence 113

6 Probability 115
6.1 Probability Basics . 117

6.1.1 Probability Spaces . 117
6.1.2 Conditional Probability and Independence 120
6.1.3 Bayes’ Theorem . 122

6.2 Random Variables . 123
6.2.1 Probability Distributions of Random Variables 123
6.2.2 Independence of Random Variables . 128

6.3 Meaning of Probability . 131
6.3.1 Relative Frequency Approach to Probability 132
6.3.2 Subjective Approach to Probability . 134

i i

6.4 Random Variables in Applications . 135
6.5 Probability in the Wumpus World . 139

7 Uncertain Knowledge Representation 145
7.1 Intuitive Introduction to Bayesian Networks 147
7.2 Properties of Bayesian Networks . 149

7.2.1 Definition of a Bayesian Network . 149
7.2.2 Representation of a Bayesian Network 152

7.3 Causal Networks as Bayesian Networks . 154
7.3.1 Causality . 154
7.3.2 Causality and the Markov Condition 155
7.3.3 Markov Condition without Causality 159

7.4 Inference in Bayesian Networks . 160
7.4.1 Examples of Inference . 160
7.4.2 Inference Algorithms and Packages . 162
7.4.3 Inference Using Netica . 163

7.5 Networks with Continuous Variables . 165
7.5.1 Gaussian Bayesian Networks . 165
7.5.2 Hybrid Networks . 168

7.6 Obtaining the Probabilities . 170
7.6.1 Difficulty Inherent in Multiple Parents 170
7.6.2 Basic Noisy OR-Gate Model . 170
7.6.3 Leaky Noisy OR-Gate Model . 172
7.6.4 Further Models . 174

7.7 Large-Scale Application: Promedas . 174

8 Advanced Properties of Bayesian Networks 181
8.1 Entailed Conditional Independencies . 182

8.1.1 Examples of Entailed Conditional Independencies 182
8.1.2 d-Separation . 185

8.2 Faithfulness . 188
8.2.1 Unfaithful Probability Distributions 188
8.2.2 Faithfulness Condition . 190

8.3 Markov Equivalence . 191
8.4 Markov Blankets and Boundaries . 192

9 Decision Analysis 201
9.1 Decision Trees . 202

9.1.1 Simple Examples . 202
9.1.2 Solving More Complex Decision Trees 205

9.2 Influence Diagrams . 216
9.2.1 Representing Decision Problems with Influence Diagrams 216
9.2.2 Solving Influence Diagrams . 222
9.2.3 Techniques for Solving Influence Diagrams 222
9.2.4 Solving Influence Diagrams Using Netica 226

9.3 Modeling Risk Preferences . 231
9.3.1 Exponential Utility Function . 231
9.3.2 Assessing r . 232

9.4 Analyzing Risk Directly . 233
9.4.1 Using the Variance to Measure Risk 233
9.4.2 Risk Profiles . 235

i i

9.4.3 Dominance . 236
9.5 Good Decision versus Good Outcome . 239
9.6 Sensitivity Analysis . 239
9.7 Value of Information . 241

9.7.1 Expected Value of Perfect Information 242
9.7.2 Expected Value of Imperfect Information 244

9.8 Discussion and Further Reading . 245
9.8.1 Academics . 246
9.8.2 Business and Finance . 247
9.8.3 Capital Equipment . 247
9.8.4 Computer Games . 247
9.8.5 Computer Vision . 247
9.8.6 Computer Software . 247
9.8.7 Medicine . 248
9.8.8 Natural Language Processing . 248
9.8.9 Planning . 248
9.8.10 Psychology . 248
9.8.11 Reliability Analysis . 248
9.8.12 Scheduling . 249
9.8.13 Speech Recognition . 249
9.8.14 Vehicle Control and Malfunction Diagnosis 249

10 Learning Probabilistic Model Parameters 257
10.1 Learning a Single Parameter . 257

10.1.1 Binomial Random Variables . 258
10.1.2 Multinomial Random Variables . 260

10.2 Learning Parameters in a Bayesian Network 261
10.2.1 Procedure for Learning Parameters . 262
10.2.2 Equivalent Sample Size . 263

10.3 Learning Parameters with Missing DataF . 266

11 Learning Probabilistic Model Structure 275
11.1 Structure Learning Problem . 276
11.2 Score-Based Structure Learning . 276

11.2.1 Bayesian Score . 276
11.2.2 BIC Score . 283
11.2.3 Consistent Scoring Criteria . 284
11.2.4 How Many DAGs Must We Score? . 285
11.2.5 Using the Learned Network to Do Inference 285
11.2.6 Learning Structure with Missing DataF 286
11.2.7 Approximate Structure Learning . 293
11.2.8 Model Averaging . 297
11.2.9 Approximate Model AveragingF . 300

11.3 Constraint-Based Structure Learning . 303
11.3.1 Learning a DAG Faithful to P . 303
11.3.2 Learning a DAG in which P Is Embedded Faithfully 307

11.4 Application: MENTOR . 308
11.4.1 Developing the Network . 308
11.4.2 Validating MENTOR . 310

11.5 Software Packages for Learning . 311
11.6 Causal Learning . 312

i i

11.6.1 Causal Faithfulness Assumption . 312
11.6.2 Causal Embedded Faithfulness Assumption 314
11.6.3 Application: College Student Retention Rate 317

11.7 Class Probability Trees . 320
11.7.1 Theory of Class Probability Trees . 320
11.7.2 Application to Targeted Advertising 322

11.8 Discussion and Further Reading . 325
11.8.1 Biology . 325
11.8.2 Business and Finance . 326
11.8.3 Causal Learning . 326
11.8.4 Data Mining . 326
11.8.5 Medicine . 326
11.8.6 Weather Forecasting . 326

12 Unsupervised Learning and Reinforcement Learning 331
12.1 Unsupervised Learning . 331

12.1.1 Clustering . 331
12.1.2 Automated Discovery . 333

12.2 Reinforcement Learning . 333
12.2.1 Multi-Armed Bandit Algorithms . 333
12.2.2 Dynamic NetworksF . 336

12.3 Discussion and Further Reading . 345

III Emergent Intelligence 349

13 Evolutionary Computation 351
13.1 Genetics Review . 352
13.2 Genetic Algorithms . 354

13.2.1 Algorithm . 354
13.2.2 Illustrative Example . 355
13.2.3 Traveling Salesperson Problem . 357

13.3 Genetic Programming . 364
13.3.1 Illustrative Example . 365
13.3.2 Artificial Ant . 367
13.3.3 Application to Financial Trading . 370

13.4 Discussion and Further Reading . 373

14 Swarm Intelligence 377
14.1 Ant System . 377

14.1.1 Real Ant Colonies . 378
14.1.2 Artificial Ants for Solving the TSP . 378

14.2 Flocks . 381
14.3 Discussion and Further Reading . 383

IV Neural Intelligence 387

15 Neural Networks and Deep Learning 389
15.1 The Perceptron . 389

15.1.1 Learning the Weights for a Perceptron 391
15.1.2 The Perceptron and Logistic Regression 394

i i

15.2 Feedforward Neural Networks . 395
15.2.1 Modeling XOR . 395
15.2.2 Example with Two Hidden Layers . 398
15.2.3 Structure of a Feedforward Neural Network 401

15.3 Activation Functions . 403
15.3.1 Output Nodes . 403
15.3.2 Hidden Nodes . 405

15.4 Application to Image Recognition . 407
15.5 Discussion and Further Reading . 407

V Language Understanding 413

16 Natural Language Understanding 415
16.1 Parsing . 417

16.1.1 Recursive Parser . 418
16.1.2 Ambiguity . 420
16.1.3 Dynamic Programming Parser . 422
16.1.4 Probabilistic Parser . 426
16.1.5 Obtaining Probabilities for a PCFG 428
16.1.6 Lexicalized PCFG . 428

16.2 Semantic Interpretation . 430
16.3 Concept/Knowledge Interpretation . 431
16.4 Information Extraction . 432

16.4.1 Applications of Information Extraction 432
16.4.2 Architecture for an Information Extraction System 433

16.5 Discussion and Further Reading . 435

References 437

Index 459

i
i

i
i

i i

Preface

Over the years, my view of an artificial intelligence (AI) course has changed significantly. I
used to view it as a course that should discuss our efforts to develop an artificial entity that
can learn and make decisions in a complex, changing environment, affect that environment,
and communicate its knowledge and choices to humans; that is, an entity that can think.
I would therefore cover the weak AI methods that failed to scale up. However, as strong
methods that solved challenging problems in limited domains became more predominant,
my course increasingly concerned these methods. I would cover backward chaining, forward
chaining, planning, inference in Bayesian networks, normative decision analysis, evolutionary
computation, decision tree learning, Bayesian network learning, supervised and unsupervised
learning, and reinforcement learning. I would show useful applications of these methods.
These techniques have come to be as important to a computer science student’s repertoire
as techniques such as divide-and-conquer, greedy methods, branch-and-bound, etc. Yet a
student would not see them unless the student took an AI course. So my AI course evolved
into a course that undergraduate students would take either concurrently or following an
analysis of algorithms course, and would cover what I viewed as important problem-solving
strategies that have emerged from the field of AI. I feel such a course should be a standard
component of every computer science curriculum just like data structures and analysis of
algorithms.

No text satisfied my needs for the course I taught for two reasons:

1. AI is a vast field that has included the development of many and varied techniques
over the past 50 years. Current texts tried to include most of what has been going on
rather than simply providing useful methods and algorithms.

2. No current text was accessible to students at a mainstream university like Northeastern
Illinois University. I had this same problem with my analysis of algorithms course,
and was the reason I wrote Foundations of Algorithms.

So I taught the course using my own Bayesian network texts and class notes. I finally
decided to turn these notes into this textbook so professors at other universities could provide
a similar course. Although I have endeavored to make the text accessible to all computer
science students, I have not compromised on rigor. I feel this text is appropriate for an
introduction to artificial intelligence course at any university.

This text is not meant to be an encyclopedia or history of AI, but rather is meant to be
a text that can be covered in one semester; and, in the amount of time one semester allows,
provide the student with what I consider the most useful techniques that have emerged from
AI. These techniques include the following:

1. Logic-based methods

2. Probability-based methods

i i

3. Evolutionary computation and methods based on swarm intelligence

4. Neural networks and deep learning

5. Language understanding

The text clearly reflects my own bias. I have not discussed fuzzy logic, support vector
machines, and many other endeavors in AI. I also do not include searching because most
searching techniques appear in data structures and algorithms texts. Almost half the text
is about probabilistic methods. This is perhaps partially due to the fact that I know these
methods best because they are my own area of research, but also due to the fact that I view
them as most important (that is why they are my area of research). In this second edition I
have added a section on neural networks and deep learning because of their increased usage
in fields such as speech and image recognition.

I have written the material in the order I teach it. So, I recommend simply covering the
chapters from first to last. If there is not time to cover the entire book, I recommend leaving
out Sections 9.3 through 9.6 where I have explored more advanced topics in decision analysis,
and Section 11.6, which concerns causal learning. Sections marked with aF contain material
that is inherently more difficult than the other material in the text. However, they do cover
important topics and should not be skipped if the students have the sophistication to grasp
them. I make available powerpoint presentations covering material in Chapters 2, 5, 6, 7,
9, 11, 13, 14, and 15. I would consider this the minimum amount of coverage necessary to
provide an introduction to the various methods used in artificial intelligence.

I thank Dawn Holmes and Kevin Korb for reading the manuscript and providing useful
comments. I also thank Prentice Hall for allowing me to include excerpts from my text
Learning Bayesian Networks, and Morgan Kaufmann for allowing me to include excerpts
from my texts Probabilistic Methods for Financial and Marketing Informatics and Proba-
bilistic Methods for Bioinformatics.

Richard E. Neapolitan
RE-Neapolitan@neiu.edu

mailto:RE-Neapolitan@neiu.edu

i
i

i
i

i i

Chapter 1

Introduction to Artificial
Intelligence

In 1990, I (Richard Neapolitan) was relatively new to the field of Artificial Intelligence
(AI). At the 6th Conference on Uncertainty in Artificial Intelligence, which was held at
MIT, I met Eugene Charniak, who at the time was a well-known researcher in AI. During
a conversation while strolling along the campus, I said, “I heard that the Japanese are
applying fuzzy logic to AI.” Gene responded “I don’t believe the Japanese have been any
more successful at AI than us.” This comment substantiated that which I had already begun
to realize, namely that AI seemed to be a pronounced failure.

i
i

i
i

i
i

i
i

2 Chapter 1 Introduction to Artificial Intelligence

Dr. Charniak’s comment was correct in 1990 and it is still correct today. If we consider
AI to be the development of an artificial entity such as the Terminator in the movie by the
same name or HAL in the classic sci-fi movie Space Odyssey, then we have not developed
anything close. The Terminator and HAL are artificial entities that can learn and make
decisions in a complex, changing environment, affect that environment, and communicate
their knowledge and choices to humans. We have no such entities.

So why does the field of AI persist, and why was this book written? In their efforts
to develop artificial intelligence, researchers looked at the behavior/reasoning of intelligent
entities such as humans, and developed algorithms based on that behavior. These algorithms
have been used to solve many interesting problems, including the development of systems
that behave intelligently in limited domains. Such systems includes ones that can perform
medical diagnosis, diagnose problems with software, make financial decisions, navigate a
difficult terrain, monitor the possible failure of a space shuttle, recognize speech and faces,
understand text, plan a trip, track a target, learn an individual’s preferences from the
preferences of similar individuals, learn the causal relationships among genes, and learn
which genes affect a phenotype. This book concerns these algorithms and applications.
Before discussing the content of this book further, we provide a brief history of AI.

1.1 History of Artificial Intelligence

We start by discussing early efforts to define artificial intelligence.

1.1.1 What Is Artificial Intelligence?

Abandoning the philosophical question of what it means for an artificial entity to think or
have intelligence, Alan Turing [1950] developed an empirical test of artificial intelligence,
which is more appropriate to the computer scientist endeavoring to implement artificial
intelligence on a computer. The Turing test is an operational test; that is, it provides
a concrete way to determine whether the entity is intelligent. The test involves a human
interrogator who is in one room, another human being in a second room, and an artificial
entity in a third room. The interrogator is allowed to communicate with both the other
human and the artificial entity only with a textual device such as a terminal. The inter-
rogator is asked to distinguish the other human from the artificial entity based on answers
to questions posed by the interrogator. If the interrogator cannot do this, the Turing test
is passed and we say that the artificial entity is intelligent.

Note that the Turing test avoids physical interaction between the interrogator and the
artificial entity; the assumption is that physical interaction is not necessary for intelligence.
For example, HAL in the movie Space Odyssey is simply an entity with which the crew
communicates, and HAL would pass the Turing test. If the interrogator is provided with
visual information about the artificial entity so that the interrogator can test the entity’s
ability to perceive and navigate in the world, we call the test the total Turing test. The
Terminator in the movie of the same name would pass this test.

Searle [1980] took exception to the Turing test with his Chinese room thought exper-
iment. The experiment proceeds as follows. Suppose that we have successfully developed
a computer program that appears to understand Chinese. That is, the program takes
sentences written with Chinese characters as input, processes the characters, and outputs
sentences written using Chinese characters. See Figure 1.1. If it is able to convince a Chinese
interrogator that it is a human, then the Turing test would be passed.

Searle asks “Does the program literally understand Chinese, or is it only simulating the
ability to understand Chinese?” To address this question, Searle proposes that he could sit

i
i

i
i

i
i

i
i

1.1 History of Artificial Intelligence 3

Figure 1.1 The Chinese room experiment.

in a closed room holding a book with an English version of the program, and adequate paper
and pencils to carry out the instructions of the program by hand. The Chinese interrogator
could then provide Chinese sentences through a slot in the door, and Searle could process
them using the program’s instructions and send Chinese sentences back through the same
slot. Searle says that he has performed the exact same task as the computer that passed
the Turing test. That is, each is following a program that simulates intelligent behavior.
However, Searle notes that he does not speak Chinese. Therefore, because he does not
understand Chinese, the reasonable conclusion is that the computer does not understand
Chinese either. Searle argues that if the computer is not understanding the conversation,
then it is not thinking, and therefore it does not have an intelligent mind.

Searle formulated the philosophical position known as strong AI, which is as follows:

The appropriately programmed computer really is a mind, in the sense that
computers given the right programs can be literally said to understand and have
other cognitive states.

— Searle, 1980

Based on his Chinese room experiment, Searle concludes that strong AI is not possible.
He states that “I can have any formal program you like, but I still understand nothing.”
Searle’s paper resulted in a great deal of controversy and discussion for some time to come
(see, for example, [Harnad, 2001]).

The position that computers could appear and behave intelligently, but not necessarily
understand, is called weak AI. The essence of the matter is whether a computer could
actually have a mind (strong AI) or could only simulate a mind (weak AI). This distinc-
tion is of greater concern to the philosopher who is discussing the notion of consciousness
[Chalmers, 1996]. Perhaps a philosopher could even argue that emergentism might take
place in the Chinese room experiment, and a mind might arise from Searle performing all
his manipulations. Practically speaking, none of this is of concern to the computer scientist.
If the program behaves as if it is intelligent, computer scientists have achieved their goal.

i
i

i
i

i
i

i
i

4 Chapter 1 Introduction to Artificial Intelligence

1.1.2 Emergence of AI

Initial efforts at AI involved modeling the neurons in the brain. An artificial neuron is
treated as a binary variable that is switched to either on or off. This notion was first
proposed in [McCulloch and Pitts, 1943], and was furthered by Donald Hebb [1949] when
he developed Hebbian learning for neural networks. In 1951, Marvin Minsky and Dean
Edmonds built SNARC, the first neural network computer.

Following this accomplishment and Turing’s development of the Turing test, researchers
became increasingly interested in the study of neural networks and intelligent systems, re-
sulting in John McCarthy1 organizing a 2-month workshop involving interested researchers
at Dartmouth University in 1956. He coined the term Artificial Intelligence at that work-
shop. Attendees included Minsky, Claude Shannon (the developer of information theory),
and many others. AI emerged as a new discipline whose goal was to create computer systems
that could learn, react, and make decisions in a complex, changing environment.

1.1.3 Cognitive Science and AI

Cognitive science is the discipline that studies the mind and its processes. It concerns
how information is represented and processed by the mind. It is an interdisciplinary field
spanning philosophy, psychology, artificial intelligence, neuroscience, linguistics, and anthro-
pology, and emerged as its own discipline somewhat concurrently with AI. Cognitive science
involves empirical studies of the mind, whereas AI concerns the development of an artificial
mind. However, owing to their related endeavors, each field is able to borrow from the other.

1.1.4 Logical Approach to AI

Most of the early successes of AI were based on modeling human logic. In 1955–1956
Allen Newell and Herbert Simon developed a program called the Logic Theorist that
was intended to mimic the problem-solving skills of a human being and is considered the
first artificial intelligence program. It was able to prove 38 of the first 52 theorems in
Whitehead and Russell’s Principia Mathematica, and find shorter proofs for some of them
[McCorduck, 2004]. In 1961, Newell and Simon forwarded the General Problem Solver
(GPS), which was a program intended to work as a universal problem solver machine. Its
reasoning was based on means-end analysis and the way humans handled goals and sub-
goals while solving a problem. GPS was able to solve simple problems like the Towers of
Hanoi, but did not scale up owing to combinatorial explosion. In 1959, Gelernter developed
the Geometry Theorem Prover [Gelernter, 1959], which was able to prove theorems in
elementary Euclidean plane geometry.

McCarthy [1958] describes a hypothetical program called the Advice Taker. This
program was unlike previous efforts, in that it was designed to accept new axioms about
the environment, and reason with them without being reprogrammed.

The main advantages we expect the advice taker to have is that its behaviour will
be improvable merely by making statements to it, telling it about its symbolic
environment and what is wanted from it. To make these statements will require
little if any knowledge of the program or the previous knowledge of the advice
taker. One will be able to assume that the advice taker will have available to
it a fairly wide class of immediate logical consequences of anything it is told
and its previous knowledge. This property is expected to have much in common
with what makes us describe certain humans as having common sense. We shall

1John McCarthy developed the LISP programming language for AI applications and is considered by
many to be the father of AI.

i
i

i
i

i
i

i
i

1.1 History of Artificial Intelligence 5

therefore say that a program has common sense if it automatically deduces for
itself a sufficiently wide class of immediate consequences of anything it is told
and what it already knows.

— McCarthy, 1958

The Advice Taker advanced an important notion in AI, namely the notion of separating the
representation of the world (the knowledge) from the manipulation of the representation
(the reasoning).

In order to obtain a manageable grasp on developing an entity that could reason intel-
ligently relative to all aspects of its world, researchers developed microworlds. The most
well-known of these is the blocks world [Winograd, 1972]; [Winston, 1973], which is dis-
cussed in Section 3.2.2.1. This world consists of a set of blocks placed on a table. A robot
then has the task of manipulating the blocks in various ways.

These early successes in AI led researchers to be very optimistic about its future. The
following is a well-known quote:

It is not my aim to surprise or shock you – but the simplest way I can summarize
is to say that there are now in the world machines that think, that learn and that
create. Moreover, their ability to do these things is going to increase rapidly until
– in a visible future – the range of problems they can handle will be coextensive
with the range to which the human mind has been applied.

— Simon, 1957

However, systems that could prove theorems containing a limited number of facts and
systems that behaved well in a microworld failed to scale up to systems that could prove
theorems involving many facts and ones that interact with complex worlds. One reason
for this is combinatorial explosion. There are relatively few objects in a microworld, and
therefore there are not many possible actions. As the number of objects increases, the
complexity of the search can increase exponentially. Another difficulty is in representing a
complex world rather than a simple microworld.

1.1.5 Knowledge-Based Systems

The initial AI efforts just described concerned the development of all-purpose intelligent
programs, which worked in limited domains and solved relatively simple problems. How-
ever, these programs failed to scale up to handling difficult problems. Such methods are
called weak methods because of their failure to scale up (not to be confused with weak AI
discussed earlier). With HAL and the terminator nowhere in sight, many researchers turned
their efforts to developing useful systems that solved difficult problems in specialized do-
mains. These systems used powerful, domain-specific knowledge and are called knowledge-
based systems. Because they often perform the task of an expert, another term for many
such systems is expert systems. Ordinarily, they follow the approach McCarthy specified
for the Advice Taker. That is, the knowledge is represented by rules about the particular
domain, and the reasoning consists of general-purpose algorithms that manipulate the rules.
The details of how this is done appear in Section 2.3.1.

Successful knowledge-based systems include DENDRAL [Lindsay et al., 1980], a system
for analyzing mass spectrograms in chemistry; XCON [McDermott, 1982], a system for
configuring VAX computers; and ACRONYM [Brooks, 1981], a vision support system.

Initially, knowledge-based systems were based on logic, performed exact inference, and
arrived at categorical conclusions. However, in many domains, in particular medicine, we
cannot be certain of our conclusions.

i
i

i
i

i
i

i
i

6 Chapter 1 Introduction to Artificial Intelligence

Why are categorical decisions not sufficient for all of medicine? Because the
world is too complex! Although many decisions may be made straightforwardly,
many are too difficult to be prescribed in any simple matter. When many factors
may enter into a decision, when these factors may themselves be uncertain, when
some factors may become unimportant depending on other factors, and when
there is a significant cost associated with gathering information that may not
actually be required for the decision, then the rigidity of the flowchart makes it
an inappropriate decision-making instrument.

— Szolovits and Pauker, 1978

Researchers searched for ways to incorporate uncertainty in the rules in their knowledge-
based systems. The most notable such effort was the incorporation of certainty factors
in the MYCIN system [Buchanan and Shortliffe, 1984]. MYCIN is a medical expert system
for diagnosing bacterial infections and prescribing treatments for them. Certainty factors
are described in the introduction to Chapter 6.

1.1.6 Probabilistic Approach to AI

Neapolitan [1989] shows that the rule-based representation of uncertain knowledge and rea-
soning is not only cumbersome and complex, but also does not model how humans reason
very well. Pearl [1986] made the more reasonable conjecture that humans identify local
probabilistic causal relationships between individual propositions and reason with these
relationships. At this same time researchers in decision analysis [Shachter, 1986] were de-
veloping influence diagrams, which provide us with a normative decision in the face of uncer-
tainty. In the 1980s, researchers from cognitive science (e.g., Judea Pearl), computer science
(e.g., Peter Cheeseman and Lotfi Zadeh), decision analysis (e.g., Ross Shachter), medicine
(e.g., David Heckerman and Gregory Cooper), mathematics and statistics (e.g., Richard
Neapolitan and David Spiegelhalter) and philosophy (e.g., Henry Kyburg) met at the newly
formed Workshop on Uncertainty in Artificial Intelligence (now a conference) to discuss
how to best perform uncertain inference in artificial intelligence. The texts Probabilistic
Reasoning in Expert Systems [Neapolitan, 1989] and Probabilistic Reasoning in Intelligent
Systems [Pearl, 1988] integrated many of the results of these discussions into the field we
now call Bayesian networks. Bayesian networks have arguably become the standard for
handling uncertain inference in AI, and many AI applications have been developed using
them. Section 9.8 lists some of them.

1.1.7 Evolutionary Computation and Swarm Intelligence

The approaches to AI just discussed model human intelligence at the individual cogni-
tive level, namely human logical reasoning and probabilistic reasoning. Separate areas of
AI, which model intelligence displayed in populations of life forms, emerged simultane-
ously with these approaches. Evolutionary computation [Fraser, 1958]; [Holland, 1975];
[Koza, 1992]; [Fogel, 1994] endeavors to obtain approximate solutions to problems such as
optimization problems using the evolutionary mechanisms involved in natural selection as
its paradigm. A related area of recent research concerns swarm intelligence. Many species
perform complex tasks when working as a group, even though each member of the group
seemingly exhibits little intelligence. For example, an ant colony is quite effective at finding
the shortest path between its nest and some source of food, while an individual ant has no
ability to accomplish this task. Swarm intelligence is intelligent collective behavior that
emerges when some group of autonomous, non-intelligent entities interact. Using swarm in-

i
i

i
i

i
i

i
i

1.2 Outline of This Book 7

telligence as a model, researchers developed algorithms that solve many practical problems
[Kennedy and Eberhart, 2001]; [Dorigo and Gambardella, 1997].

1.1.8 Neural Networks & Deep Learning

As mentioned in Section 1.1.2, in the 1940s foundational efforts at AI involved modeling
the neurons in the brain, which resulted in the field of neural networks [Hebb, 1949].
An artificial neural network consists of a large collection of neural units (artificial neurons),
whose behavior is roughly based on how real neurons communicate with each other in the
brain. Each neural unit is connected with many other neural units, and links can enhance or
inhibit the activation state of adjoining units. The network architecture consists of multiple
layers of neural units. A signal initiates at the input layer, traverses through hidden layers,
and finally culminates at the output layer

Once the logical approach to AI became dominant in the 1950s, neural networks fell
from popularity. However, new algorithms for training neural networks and dramatically
increased computer processing speed resulted in a re-emergence of the use of neural nets in
the field called deep learning [Goodfellow et al., 2016]. Deep learning neural network
architectures differ from older neural networks in that they often have more hidden layers.
Furthermore, deep learning networks can be trained using both unsupervised and super-
vised learning. Deep learning has been used to solve tasks like computer vision and speech
recognition, which were difficult with other approaches.

1.1.9 A Return to Creating HAL

The knowledge-based approach, the probabilistic approach, evolutionary computation, and
neural networks have resulted in many useful systems that behave intelligently or solve
problems in specialized domains. Examples were provided at the beginning of this introduc-
tion. Nevertheless, some of the early researchers in AI, including John McCarthy [2007] and
Marvin Minsky [2007], felt that AI should quit focusing on developing systems that perform
specialized tasks well and return to developing systems that think. In 2004, they held their
first symposium on human-level AI [Minsky et al., 2004].

The related field Artificial General Intelligence (AGI) emerged in 2007, and has its
own journal, the Journal of Artificial General Intelligence [Goertzel and Pennachin, 2007].
Researchers in AGI are searching for a program that can learn and make decisions in any
arbitrary environment.

Another current effort at developing a thinking entity is the work of Gerry Edelman.
Edelman [2006] explains the development and organization of higher brain functions in
terms of a process known as neuronal group selection. He calls this model neural
Darwinism. Based on this model, he has developed a number of robot-like brain-based
devices (BBDs) that interact with real-world environments [Edelman, 2007]. However, they
are able to navigate only in limited domains.

1.2 Outline of This Book

The efforts of the human-level AI community, the AGI community, and Gerry Edelman
are all vitally important if we hope to someday have an intelligent entity that reasons in
a changing, complex environment. However, the approach taken in this text is to focus on
the strong AI methods, which have resulted in developing systems that successfully solve
interesting and important problems in specialized domains.

The early successes in AI were based on modeling logical reasoning. For example, suppose
Mary knows that if someone completes 120 credit hours and passes the comprehensive exam,

i
i

i
i

i
i

i
i

8 Chapter 1 Introduction to Artificial Intelligence

that person will graduate. Suppose she then learns that Joe completed 120 credit hours
and that he did not graduate. She reasons logically that for sure he did not pass the
comprehensive exam. AI models based on such logical reasoning is the focus of Part I of
this text.

In the 1970s, it became increasingly apparent that many judgments made by humans
involve uncertain or probabilistic inference. For example, suppose Mary knows that studying
hard will greatly increase the chances of getting an A on the exam; she also realizes that a
smart person is more likely to get an A on the exam. She learns that Joe got an A. When Joe
tells her that he did not study very hard, she reasons that Joe is probably smart. By 1990,
the modeling of such probabilistic inference became commonplace in AI; such inference is
the focus of Part II.

Intelligent behavior is not limited to human reasoning. Evolution itself seems pretty
smart in that creatures better able to adapt to their environment tend to survive, with the
result being the existence of humans themselves. Researchers in evolutionary computation
have solved interesting problems based on a model of natural selection. The actions of non-
intelligent entities acting in groups sometimes result in a type of emergent intelligence, called
swarm intelligence, and useful algorithms have been developed based on this model. We call
both these types of intelligence emergent intelligence. Algorithms based on emergent
intelligence are discussed in Part III.

As mentioned in Section 1.1.8, recently there has been a rebirth of the use of neural
networks in the field called deep learning, which has been applied successfully to areas such
as computer vision and speech recognition. Part IV is devoted to neural networks and deep
learning.

Finally, Part V discusses an important endeavor in AI, namely natural language under-
standing.

i i

Part I

Logical Intelligence

i i

Chapter 2

Propositional Logic

Propositional logic concerns propositions/statements, which we assume to be true or false,
and the deductive inference of the truth of other propositions from the ones whose truth
states we assume to know. By deductive inference we mean a process by which the truth
of the conclusion is demonstrated to necessarily follow from the truth of the premises. This
variation of a classic example illustrates such a deduction:

Socrates is a man.

If Socrates is a man, then Socrates is mortal.

Therefore, Socrates is mortal.

If we assume we know that Socrates is a man and we believe that “if Socrates is a man,
then Socrates is a mortal” is a true statement, then most of us would reason that Socrates
is mortal. Propositional logic does not ask whether this line of reasoning makes sense.
Rather, it mathematically models this and other common types of deductive inference that
most of us agree make sense. When we incorporate such inference in an artificial intelligence
algorithm, we call the algorithm logic-based.

In Section 2.1 we provide the basic properties of propositional logic. Section 2.2 devel-
ops an inference method called resolution theorem proving, which is the strategy used in

i
i

i
i

i
i

i
i

12 Chapter 2 Propositional Logic

many automatic reasoning programs. Section 2.3 shows artificial intelligence applications
of propositional logic.

2.1 Basics of Propositional Logic

Propositional logic is discussed starting with its syntax and its semantics.

2.1.1 Syntax

A formal language is a set of words or expressions that are obtained using an alphabet
and rules. The alphabet for a formal language is the set of symbols from which each word
is constructed. The set of rules, called the syntax of the language, specifies how elements
of the alphabet are combined to construct words. These words are called well-formed
strings of symbols.

Propositional logic consists of a formal language and semantics that give meaning to
the well-formed strings, which are called propositions.

The alphabet of propositional logic contains the following symbols:

1. The letters of the English alphabet; that is, A, B, C, ..., Z, and each of these letters
with an index (e.g., A4).

2. The logical values True and False.

3. These special symbols:

¬ (NOT)

∧ (AND)

∨ (OR)

⇒ (IF-THEN)

⇔ (IF AND ONLY IF)

() (GROUPING).

The symbol ¬ is called a unary connective and the symbols ∧, ∨, ⇒, and ⇔ are
called binary connectives.

The rules for creating propositions are as follows:

1. All letters, all indexed letters, and the logical values True and False are propositions.
They are called atomic propositions.

2. If A and B are propositions, then so are ¬A, A∧B, A∨B, A⇒ B, A⇔ B, and (A).
They are called compound propositions.

The compound proposition ¬A is called the negation of A, A ∧ B is called the con-
junction of A and B, and A ∨B is called the disjunction of A and B.

Notice that we used italicized letters to refer to propositions. Such letters denote vari-
ables whose values can be propositions that are either atomic or compound. In this way we
can recursively define compound propositions. These italicized letters are not part of the
alphabet.

Example 2.1 Suppose P and Q are atomic propositions. Then applying Rule 2 once using
the ∧ connective, we have that P∧Q is a proposition. Applying Rule 2 to this compound
proposition and the atomic proposition R using the ∨ connective, we have that P∧Q∨R is
a proposition. �

i
i

i
i

i
i

i
i

2.1 Basics of Propositional Logic 13

Mathematically, this is all there is to say about the formal language of propositional
logic. However, propositional logic was developed to make statements about the real world
and to reason with these statements. The next example illustrates such statements.

Example 2.2 Suppose the propositions P and Q stand for these statements about the
world:

P: It is raining outside.

Q: The pavement is wet.

Then the following compound propositions stand for these statements about the world:

¬P: It is not raining outside.

P∧Q: It is raining outside and the pavement is wet.

P∨Q: It is raining outside or the pavement is wet.

P⇒Q: If it is raining outside, then the pavement is wet.

P⇔Q: It is raining outside if and only if the pavement is wet. �

Example 2.3 Let P, Q, and R stand for these statements about the world:

P: It is raining outside.

Q. The pavement is wet.

R: The sprinkler is on.

Then applying Rule 2 once using the ∨ connective, we have that P∨R is a proposition. Ap-
plying Rule 2 a second time using the ∧ connective, we obtain that Q∧P∨R is a proposition.
This proposition stands for the following statement about the world:

Q∧P∨R: The pavement is wet and it is raining outside or the sprinkler is on. �

2.1.2 Semantics

When you saw Example 2.3, you may have asked which of the following is meant by the
proposition Q∧P∨R:

1. It is both true that the pavement is wet and true that it is raining outside or the
sprinkler is on.

2. It is either true that the pavement is wet and it is raining outside or true that the
sprinkler is on.

Next we present the semantics of propositional logic, which answers this question.
The syntax of propositional logic is only concerned with developing propositions; it has

nothing to do with attaching meaning to them. As mentioned previously, we need not even
associate statements about the world with the propositions. The semantics of propositional
logic gives meaning to the propositions. The semantics consists of rules for assigning either
the value T (true) or F (false) to every proposition. Such an assignment is called the truth
value of the proposition. If a proposition has truth value T, we say it is true; otherwise, we
say it is false.

The semantics for propositional logic consist of the following rules:

i
i

i
i

i
i

i
i

14 Chapter 2 Propositional Logic

1. The logical value True is always assigned the value T and the logical value False is
always assigned the value F.

2. Every other atomic proposition is assigned a value T or F. The set of all these assign-
ments constitutes a model or possible world. All possible worlds (assignments) are
permissible.

3. The truth values obtained by applying each connective to arbitrary propositions are
given by the following truth tables:

a:
A ¬A
T F
F T

b:

A B A ∧B
T T T
T F F
F T F
F F F

c:

A B A ∨B
T T T
T F T
F T T
F F F

d:

A B A⇒ B
T T T
T F F
F T T
F F T

e:

A B A⇔ B
T T T
T F F
F T F
F F T

4. The truth value for a compound proposition such as P∧Q∨R is determined recursively
using the above truth tables. This is done according to the following rules:

(a) The () grouping has highest precedence in that the truth value of an entire
sub-proposition enclosed by () is evaluated first.

(b) The precedence order for the connectives is ¬, ∧, ∨, ⇒, ⇔.

(c) Binary connectives that are the same associate from left to right.

We will show examples of applying Rule 4 shortly. First, let’s discuss the truth tables
in Rule 3. Mathematically, the semantics for propositional logic does no more than assign
truth values to propositions. So, we could have defined a semantics using different truth
tables than those in Rule 3. However, our purpose is to make statements about the real
world and to reason with those statements. So the semantics have been defined to reflect
how humans reason with statements in the world. Truth Tables a through c agree readily
with our intuition. For example, we would only consider A ∧ B true if both A and B were
true. However, Truth Table d, which concerns A⇒ B, is not so readily accessible. Consider
the following propositions:

P: It is raining.

Q: Professor Neapolitan is 5 feet tall.

Suppose you look out the window and see that it is not raining, and you look at Professor
Neapolitan and note than he is almost 6 feet tall. So you know both P and Q are false.
Then, according to Truth Table d, Row 4, P⇒Q is true. But how can raining imply that
Neapolitan is 5 feet tall when we know that he is not? First, we must be clear what a
proposition denotes. Proposition P denotes that it is currently raining. It has nothing to
do with it raining at some other time. Therefore, P⇒Q does not mean that if it rains some
day, then Neapolitan will be 5 feet tall. The implication only concerns the proposition that
there is rain at the present time, which is false.

i
i

i
i

i
i

i
i

2.1 Basics of Propositional Logic 15

The perceived difficulty with A ⇒ B ordinarily concerns rows 3 and 4 of Truth Table
d. So, let’s investigate whether the truth values in those rows agree with our expectations.
Suppose we learn A⇒ B is true. Then if we later learn A is also true, we know we must be
in row 1 of Truth Table d, which means B is true. This is what we should expect. If we later
learn that A is false, we know we must be in row 3 or row 4, which means we do not know
whether B is true or false. This is also what we would expect. So the current assignments of
truth values agree with our expectations. Suppose now that we assign different truth values
to A⇒ B in rows 3 and 4. Assume first that we assign F to A⇒ B in both these rows and
leave the assignments in rows 1 and 2 unchanged. Then if we know A⇒ B and B are both
true, we must be in row 1, which means we conclude that A is true. However, this means
B implies A, which is not what we intended by A ⇒ B. Suppose instead we assign F to
A ⇒ B in row 3 but not row 4. Then if we know A ⇒ B is true and A is false, we must
be in row 4, which means we conclude that B is false. However, this means that A being
false implies that B is false, which is not what we intended by A⇒ B. A similar difficulty
results if we assign F to A⇒ B in row 4 but not row 3.

A discussion like the one just presented lends intuition to the assignment of truth values
for A⇔ B in Truth Table e. It is left as an exercise to develop such a discussion.

We now provide examples of evaluating the truth values of expressions.

Example 2.4 Consider the following proposition: Q∧P∨R. This is the proposition in Ex-
ample 2.3. Because ∧ has precedence over ∨, the meaning of Q∧P∨R is the second statement
shown at the beginning of this section, namely: It is either true that the pavement is wet
and it is raining outside or true that the sprinkler is on.

A truth table shows which assignments of values to P, Q, and R make Q∧P∨R true.
That is, it discloses to us the possible worlds in which the proposition is true. The truth
table is as follows:

Q P R Q∧P Q∧P∨R
T T T T T
T T F T T
T F T F T
T F F F F
F T T F T
F T F F F
F F T F T
F F F F F

The truth table is constructed by first listing all eight possible assignments of values
to Q, P, and R; next computing the values of Q∧P using Truth Table b because ∧ has
precedence over ∨; and finally computing the values of Q∧P∨R using Truth Table c. �

Example 2.5 Suppose we actually meant to say the first statement at the beginning of this
section — namely, it is both true that the pavement is wet and true that it is raining outside
or the sprinkler is on. Rule 4 above says that the () connective has highest precedence. So
we can write Q∧(P∨R) to make the first statement. A truth table for this proposition is as
follows:

i
i

i
i

i
i

i
i

16 Chapter 2 Propositional Logic

Q P R P∨R Q∧(P∨R)
T T T T T
T T F T T
T F T T T
T F F F F
F T T T F
F T F T F
F F T T F
F F F F F

�

Example 2.6 Suppose you read the following sign in the shoe store: Your shoes may be
returned within 30 days of the purchase date if they have not been worn. Let’s express
this statement using propositional logic and investigate when it is true. Let the following
propositions stand for these statements about the world:

P: Your shoes have been worn.

Q: It has been no more than 30 days since you purchased the shoes.

R: Your shoes may be returned.

Then the statement of the store’s policy concerning your shoes is expressed logically as the
following proposition:

¬P ∧Q⇒ R.

A truth table for this proposition is as follows:

P Q R ¬P ¬P∧Q ¬P∧Q⇒R
T T T F F T
T T F F F T
T F T F F T
T F F F F T
F T T T T T
F T F T T F
F F T T F T
F F F T F T

This result may seem odd to you. The store owner’s intent was to disallow shoes to be
returned if they had been worn or if it has been more than 30 days. However, several of
the possible worlds in which ¬P∧Q⇒R is true have P being T, which means the shoes have
been worn, and/or Q being false, which means it has been more than 30 days. The only
world that is disallowed is one in which P is false (your shoes have not been worn), Q is true
(it has been no more than 30 days), and R is false (your shoes may not be returned). The
problem is that the store owner, like humans often do, did not explicitly state that which
was intended. The intent was to allow the shoes to be returned if and only if they were not
worn and it has been no more than 30 days. If the store owner made this statement, then
we would express the store owner’s policy logically as follows:

¬P ∧Q⇔ R.

It is left as an exercise to develop a truth table for this statement and show that the store
owner’s intent is properly modeled. �

i
i

i
i

i
i

i
i

2.1 Basics of Propositional Logic 17

2.1.3 Tautologies and Logical Implication

We have the following definitions concerning propositions.

Definition 2.1 A proposition is called a tautology if and only if it is true in all possible
worlds.�

Definition 2.2 A proposition is called a contradiction if and only if it is false in all
possible worlds.�

Notice that we said “if and only if” in the previous definitions. Technically, if we did
not, we would leave open the possibility that a proposition with some different properties
could also be called a tautology. We did this to further make the point in Example 2.6.
Henceforth, we will not be so precise when stating definitions. It is assumed that we mean
“if and only if.”

Example 2.7 The following truth table shows that P∨¬P is a tautology.

P ¬P P∨¬P
T F T
F T T

�
Stated, either P must be true or ¬P must be true.

Example 2.8 The following truth table shows that P∧¬P is a contradiction.

P ¬P P∧¬P
T F F
F T F

Stated, P and ¬P cannot both be true. �

The following definitions concern two important tautologies.

Definition 2.3 Given two propositions A and B, if A ⇒ B is a tautology, we say that A
logically implies B and we write AV B.�

Example 2.9 The following truth table shows that A ∧B V A:

A B A ∧B A ∧B ⇒ A
T T T T
T F F T
F T F T
F F F T

Because A ∧B ⇒ A is true in all possible worlds, A ∧B V A. �

Example 2.10 The following truth table shows that A ∧ (A⇒ B)V B:

A B A⇒ B A ∧ (A⇒ B) A ∧ (A⇒ B)⇒ B
T T T T T
T F F F T
F T T F T
F F T F T

i
i

i
i

i
i

i
i

18 Chapter 2 Propositional Logic

Because A ∧ (A⇒ B)⇒ B is true in all possible worlds, A ∧ (A⇒ B)V B. �

Definition 2.4 Given two propositions A and B, if A ⇔ B is a tautology, we say that A
and B are logically equivalent and we write A ≡ B.�

Example 2.11 The following truth table shows that A⇒ B ≡ ¬A ∨B:

A B ¬A A⇒ B ¬A ∨B A⇒ B ⇔ ¬A ∨B
T T F T T T
T F F F F T
F T T T T T
F F T T T T

Because A⇒ B ⇔ ¬A ∨B is a tautology, A⇒ B ≡ ¬A ∨B. �

Notice in the previous example that A ⇒ B and ¬A ∨ B have the same truth value in
every possible world. This is a general result concerning logical equivalence, which we state
in the following theorem.

Theorem 2.1 A ≡ B if and only if A and B have the same truth value in every possible
world.
Proof. The proof is left as an exercise.

Table 2.1 shows some important logical equivalences, called laws. It is left as an exercise
to establish them using truth tables. We can often simplify a logical expression using these
laws due to the following theorem:

Theorem 2.2 Suppose we have a proposition A and a sub-proposition B within A. If in
A we replace B by any proposition logically equivalent to B, we will obtain a proposition
logically equivalent to A.
Proof. The proof is left as an exercise.

Example 2.12 Suppose we have the following proposition:

¬¬P ∧ (Q ∨ ¬Q)

We can simplify it is follows:

¬¬P ∧ (Q ∨ ¬Q) ≡ P ∧ (Q ∨ ¬Q) due to the double negation law

≡ P ∧ True due to the excluded middle law

≡ P due to the identity laws.

�

2.1.4 Logical Arguments

Now that we’ve laid some groundwork, we can return to our initial goal stated at the
beginning of this chapter — namely, to mathematically model deductive inference. Recall
the following example:

Socrates is a man.

If Socrates is a man, then Socrates is mortal.

i
i

i
i

i
i

i
i

2.1 Basics of Propositional Logic 19

Table 2.1 Some Well-Known Logical Equivalences

Logical Equivalence Name
A ∨ ¬A ≡ True Excluded middle law EM
A ∧ ¬A ≡ False Contradiction law CL
A∨ False ≡ A Identity laws IL
A∧ True ≡ A
A∧ False ≡ False Domination laws DL
A∨ True ≡ True
A∨ A ≡ A Idempotent laws IL
A∧ A ≡ A
A ∧B ≡ B ∧A Commutivity law CL
A ∨B ≡ B ∨A
(A ∧B) ∧ C ≡ A ∧ (B ∧ C) Associativity law AL
(A ∨B) ∨ C ≡ A ∨ (B ∨ C)
A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C) Distributivity law DL
A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C)
¬(A ∧B) ≡ ¬A ∨ ¬B De Morgan’s laws DeML
¬(A ∨B) ≡ ¬A ∧ ¬B
A⇒ B ≡ ¬A ∨B Implication elimination IE
A⇔ B ≡ A⇒ B ∧B ⇒ A If and only if elimination IFFE
A⇒ B ≡ ¬B ⇒ ¬A Contraposition law CL
¬¬A ≡ A Double negation DN

Therefore, Socrates is mortal.

We said earlier that if we assume we know that Socrates is a man and we believe that
“if Socrates is a man, then Socrates is mortal” is a true statement, then most of us would
reason that Socrates is mortal. Let’s see how proportional logic can model this inference.
Let the following propositions stand for these statements about the world:

P: Socrates is man.

Q: Socrates is mortal.

Then the statement “if Socrates is a man, then Socrates is mortal” is modeled by this
proposition:

P⇒ Q.

If propositional logic models the way we reason, then the truth of P and P⇒Q should
entail the truth of Q. We will show that it does, but first we formalize deductive inference
using propositional logic.

An argument consists of a set of propositions, called the premises, and a proposition
called the conclusion. We say that the premises entail the conclusion if in every model
in which all the premises are true, the conclusion is also true. If the premises entail the
conclusion, we say the argument is sound; otherwise we say it is a fallacy. We write
arguments showing the list of premises followed by the conclusion as follows:

i
i

i
i

i
i

i
i

20 Chapter 2 Propositional Logic

1. A1

2. A2

...

n. An

B

We use the symbol � to denote “entails.” So if the argument is sound we write

A1, A2, . . . , An � B,

and if it is a fallacy we write
A1, A2, . . . , An 2 B.

Example 2.13 The argument concerning Socrates is as follows:

1. P

2. P⇒Q

Q

We have the following truth table concerning this argument:

P Q P⇒ Q
T T T
T F F
F T T
F F T

Because every world in which P and P⇒Q are both true, Q is also true, the premises entail
the conclusion and the argument is sound. So P, P⇒Q � Q. �

The following theorem concerns sound arguments and fallacies:

Theorem 2.3 Suppose we have an argument consisting of the premises A1, A2, . . . , An and
the conclusion B. Then A1, A2, . . . , An � B if and only if A1 ∧A2 ∧ . . . ∧An V B.
Proof. The proof is left as an exercise.

This theorem shows that, as we would expect, a sound argument is one in which the
premises logically imply the conclusion.

Example 2.14 We showed that the argument in Example 2.13 is sound. Therefore, Theo-
rem 2.3 says that we must have P∧ (P⇒ Q)VQ. Example 2.10 already obtained this result
because it showed that A ∧ (A⇒ B)V B for arbitrary propositions A and B. �

Example 2.15 The following is a common idiom: “Where there is smoke there is fire.”
It is often used when one wants to conclude that an individual must be bad because bad
statements are being made about the individual. Let’s investigate doing inference with the
literal statement itself. Let the following propositions stand for these statements about the
world:

P: There is fire.

i
i

i
i

i
i

i
i

2.1 Basics of Propositional Logic 21

Q: There is smoke.

We can assume that fire always gives rise to smoke, but not the reverse. For example, there
are friction smoke generators. So P⇒Q is true but Q⇒P is not true. Because Q⇒P is not
true, anyone who reasons using this idiom should not assume that Q⇒P is true. Therefore,
perhaps their reasoning is modeled by the following argument:

1. Q

2. P⇒Q

P

We have the following truth table concerning this argument:

P Q P⇒Q Q∧ (P⇒ Q) Q∧ (P⇒ Q)⇒P
T T T T T
T F F F T
F T T T F
F F T F T

Because Q∧ (P⇒ Q) ⇒P is not a tautology, we do not have Q∧ (P⇒ Q) VP, which
means the argument is a fallacy. So Q, P⇒Q 2 Q.

Smoke is an effect of fire but smoking also has other causes. In such a case, the presence
of the effect makes the cause more probable but not certain. We will investigate probabilis-
tically reasoning with causes and effects much more in Chapter 7. �

2.1.5 Derivation Systems

Although we can prove whether any argument is sound or a fallacy using truth tables, there
are two difficulties with this process. First, the time complexity is exponential in terms of
the number of premises. That is, if there are n premises, there are 2n rows in the truth
table needed to determine the soundness of the argument. Second, humans do not appear
to perform deductive inference in this fashion. Consider the following example.

Example 2.16 Suppose we are trying to determine how Randi earns a living. We know
that Randi either writes books or helps other people to write books. We also know that if
Randi helps other people to write books, then she earns her living as an editor. Finally, we
know that Randi does not write books.

Rather than using a truth table, we can reason as follows. Because Randi either writes
books or helps other people to write books and because Randi does not write books, we can
conclude Randi helps other people to write books. Because we now know Randi helps other
people to write books, we can conclude that Randi earns her living as an editor. �

We used inference rules to reason deductively in the previous example. Let the fol-
lowing propositions stand for these statements about the world:

P: Randi writes books.

Q: Randi helps other people to write books.

R: Randi earns her living as an editor.

i
i

i
i

i
i

i
i

22 Chapter 2 Propositional Logic

Table 2.2 Inference Rules

Inference Rule Name
A,B � A ∧B Combination rule CR
A ∧B � A Simplification rule SR
A � A ∨B Addition rule AR
A,A⇒ B � B Modus ponens MP
¬B,A⇒ B � ¬A Modus tolens MT
A⇒ B,B ⇒ C � A⇒ C Hypothetical syllogism HS
A ∨B,¬A � B Disjunctive syllogism DS
A⇒ B,¬A⇒ B � B Rule of cases RC
A⇔ B � A⇒ B Equivalence elimination EE
A⇒ B,B ⇒ A � A⇔ B Equivalence introduction EI
A,¬A � B Inconsistency rule IR
A ∧B � B ∧A “and” Commutivity rule ACR
A ∨B � B ∨A “or” Commutivity rule OCR
If A1, A2, . . . , An, B � C Deduction theorem DT
then A1, A2, . . . , An � B ⇒ C

We knew P∨Q and ¬P. Using these two facts, we concluded Q. Drawing this conclusion from
these facts makes use of the disjunctive syllogism rule. Next we concluded R because we
knew Q and Q⇒R were both true. This inference makes use of the modus ponens rule.
A set of inference rules is called a deduction system. One such set appears in Table 2.2.
A deduction system is sound if it only derives sound arguments. To show that the set of
rules in Table 2.2 is sound we need show that each of them individually is sound. We can
do this for each rule using a truth table.

Example 2.17 We establish the soundness of the modus tolens rule. Owing to Theorem
2.3 we need only show that ¬B∧ (A⇒ B)V ¬A. The following truth table establishes this
result.

A B ¬A ¬B A⇒ B ¬B ∧ (A⇒ B) ¬B ∧ (A⇒ B)⇒ ¬A
T T F F T F T
T F F T F F T
F T T F T F T
F F T T T T T

Because ¬B ∧ (A⇒ B)⇒ ¬A is a tautology, ¬B ∧ (A⇒ B)V ¬A. �

It is left as an exercise to obtain the soundness of the other rules in Table 2.2. The next
example derives a sound argument using these rules.

Example 2.18 We use the rules to derive the soundness of the argument in Example 2.16.
Again let the following propositions stand for these statements about the world:

P: Randi writes books.

Q: Randi helps other people to write books.

R: Randi earns her living as an editor.

i
i

i
i

i
i

i
i

2.1 Basics of Propositional Logic 23

The following derivation determines Randi’s occupation:

Derivation Rule

1 P∨Q Premise
2 ¬P Premise
3 Q⇒R Premise
4 Q 1, 2, DS
5 R 3, 4, MP

When we write “Premise” in the Rule column, we mean that the proposition is one of
our premises. When, for example, we write “1, 2, DS” in row 4, we mean we are using the
premises in rows 2 and 3 and the disjunctive syllogism rule to deduce Q. �

Consider the following quote from Sherlock Holmes concerning a murder case in the
novel A Study in Scarlet.

And now we come to the great question as to why. Robbery has not been the
object of the murder, for nothing was taken. Was it politics, then, or was it a
woman? That is the question which confronted me. I was inclined from the first
to the latter supposition. Political assassins are only too glad to do their work
and fly. This murder had, on the contrary, been done most deliberately, and the
perpetrator had left his tracks all over the room, showing he had been there all
the time.

— A. Conan Doyle, A Study in Scarlet

The next example uses the rules in Table 2.2 to derive Holmes’ conclusion based on this
information.

Example 2.19 Let the following propositions stand for these statements about the world:

P: Robbery was the reason for the murder.

Q: Something was taken.

R: Politics was the reason for the murder.

S: A woman was the reason for the murder.

T: The murderer left immediately.

U: The murderer left tracks all over the room.

The following derivation determines the reason for the murder:

i
i

i
i

i
i

i
i

24 Chapter 2 Propositional Logic

Derivation Rule

1 ¬Q Premise
2 P⇒Q Premise
3 ¬P⇒R∨S Premise
4 R⇒T Premise
5 U Premise
6 U⇒ ¬T Premise
7 ¬P 1, 2, MT
8 R∨S 3 7, MP
9 ¬T 5, 6, MP
10 ¬R 4, 9, MT
11 S 8, 10, DS

So we conclude that a woman was the reason for the murder. �

A deduction system is complete if it can derive every sound argument. The set of rules
in Table 2.2 is complete. However, it would not be complete if we removed the last rule
called the Deduction theorem. Notice that this rule differs from the others. All the other
rules concern arguments in which there are premises. The Deduction theorem is needed to
derive arguments in which there are no premises. An argument without premises is simply
a tautology.

Example 2.20 We derive that � A ∨ ¬A. Note that no premises appear before the �
symbol. So this is an argument without premises, which is a tautology if it is sound. We
use the rules in Table 2.2 to derive its soundness.

Derivation Rule Comment

1 A Assumption We assume A.
2 A ∨ ¬A 1, AR
3 A⇒ A ∨ ¬A 1, 2, DT We now discharge A.
4 ¬A Assumption We assume ¬A.
5 ¬A ∨A 4, AR
6 A ∨ ¬A 5, CR
7 ¬A⇒ A ∨ ¬A 4, 6, DT We now discharge ¬A.
8 A ∨ ¬A 3, 7, RC

Notice that to use the Deduction theorem, we first temporarily assume a proposition to
be true (e.g., step 1), then we conclude that a second proposition is true (e.g., step 2), and
finally we conclude that the assumed proposition implies the second proposition (e.g., step
3). At this point we discharge the assumed proposition because we do not really know it to
be true. We just temporarily assumed this so as to derive an implication. �

2.2 Resolution

Although a logical human such as Sherlock Holmes might reason similar to our derivation
in Example 2.19, it is not straightforward to convert this reasoning to a computer program.
Next we develop a different derivation strategy called resolution theorem proving. This

i
i

i
i

i
i

i
i

2.2 Resolution 25

is the strategy used in many automatic reasoning programs. First, we need to introduce
normal forms.

2.2.1 Normal Forms

We start with some definitions.

Definition 2.5 A literal is a proposition of the form P or ¬P, where P is an atomic
proposition other than True or False.�

Definition 2.6 A conjunctive clause is a conjunction of literals.�

Definition 2.7 A disjunctive clause is a disjunction of literals.�

Definition 2.8 A proposition is in disjunctive normal form if it is the disjunction of
conjunctive clauses.�

Definition 2.9 A proposition is in conjunctive normal form if it is the conjunction of
disjunctive clauses.�

Example 2.21 These propositions are in disjunctive normal form:

(P ∧Q) ∨ (R ∧ ¬P)

(P ∧Q ∧ ¬R) ∨ (S) ∨ (¬Q ∧ T) .

This proposition is not in disjunctive normal form because R∨S∧Q is not a conjunctive
clause:

(P ∧Q) ∨ (R ∨ S ∧Q) .

These propositions are in conjunctive normal form:

(P ∨Q) ∧ (R ∨ ¬P)

(P ∨Q ∨ ¬R) ∧ (S) ∧ (¬Q ∨ T) .

This proposition is not in conjunctive normal form because R∨S∧Q is not a disjunctive
clause:

(P ∨Q) ∧ (R ∨ S ∧Q) .

�

Any proposition can be converted to a logically equivalent proposition in conjunctive (or
disjunctive) normal form. Next we present an algorithm that accomplishes this task in the
case of conjunctive normal form (the laws mentioned are the ones in Table 2.1). We use a
straightforward pseudocode to show algorithms in this text. The keyword var is used to
denote “pass by reference,” which for our purposes means the variable is an output of the
algorithm.

Algorithm 2.1 Conjunctive Normal Form
Input: A proposition.
Output: A logically equivalent proposition in conjunctive normal form.

i
i

i
i

i
i

i
i

26 Chapter 2 Propositional Logic

Procedure Conjuctive Normal form(var Proposition);

remove all “⇔” symbols using the if and only if elimination law;
remove all “⇒” symbols using the implication elimination law;
repeat

if there are any double negations
remove them using the double negation law;

if there are any negations of non-atomic propositions
remove them using DeMorgan’s laws;

until the only negations are single negations of atomic propositions;
repeat

if there are any disjunctions in which one or more terms is a conjunction
remove them using these laws:

A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C) (2.1)

(A ∧B) ∨ C ≡ (A ∨ C) ∧ (B ∨ C) ; (2.2)

until Proposition is in conjunctive normal form;

Equivalence 2.1 is the Distributivity law in Table 2.1 and Equivalence 2.2 can be derived
from the Commutivity and Distributivity laws.

Example 2.22 We use Algorithm 2.1 to convert ¬ ((P⇒ Q) ∧ ¬R) to conjunctive normal
form:

¬ ((P⇒ Q) ∧ ¬R) ≡ ¬ ((¬P ∨Q) ∧ ¬R) implication elimination
≡ ¬ (¬P ∨Q) ∨ ¬¬R DeMorgan’s laws
≡ ¬ (¬P ∨Q)∨R double negation
≡ (¬¬P ∧ ¬Q)∨R DeMorgan’s laws
≡ (P ∧ ¬Q)∨R double negation
≡ (P ∨ R) ∧ (¬Q ∨ R) Equiv. 2.2

�

Example 2.23 We use Algorithm 2.1 to convert (P ∧Q) ∨ (R ∧ S) to conjunctive normal
form:

(P ∧Q) ∨ (R ∧ S) ≡ ((P ∧Q) ∨ R) ∧ ((P ∧Q) ∨ S) Equiv. 2.1
≡ (P ∨ R) ∧ (Q ∨ R) ∧ ((P ∧Q) ∨ S) Equiv. 2.2
≡ (P ∨ R) ∧ (Q ∨ R) ∧ (P ∨ S) ∧ (Q ∨ S) Equiv. 2.2

�

2.2.2 Derivations Using Resolution

Next we develop a derivation system that uses a single rule called the resolution rule. We
start with a theorem that provides us with a new strategy for showing that an argument is
sound.

Theorem 2.4 Suppose we have the argument consisting of the premises A1, A2, . . . , An
and the conclusion B. Then A1, A2, . . . , An � B if and only if A1 ∧A2 ∧ . . . ∧An ∧ ¬B is a
contradiction.
Proof. The proof is left as an exercise.

i
i

i
i

i
i

i
i

2.2 Resolution 27

Corollary 2.1 Suppose we have the argument consisting of the premises A1, A2, . . . , An
and the conclusion B. Then A1, A2, . . . , An � B if and only if A1, A2, . . . , An,¬B � False.
Proof. The proof follows from Theorem 2.4, the fact that a proposition is a contradiction
if and only if it logically implies False, and Theorem 2.3.

A soundness proof that uses Theorem 2.4 or Corollary 2.1 is called a refutation. In
a refutation, we show that if we add the negation of B to the premises, we obtain a con-
tradiction (i.e., a proposition that is false in all possible worlds). Because the premises are
assumed to be true in the current world, the only way the entire conjunction can be false
in this world is for ¬B to be false, which means B is true.

Example 2.24 We derive the modus ponens rule (A,A ⇒ B � B) using refutation and a
truth table.

A B ¬B A⇒ B A ∧ (A⇒ B) ∧ ¬B
T T F T F
T F T F F
F T F T F
F F T T F

Because A∧(A⇒ B)∧¬B is false in all possible worlds, it is a contradiction. Therefore,
owing to Theorem 2.4, A,A⇒ B � B. �

In practice we do not prove soundness using refutation with a truth table. Rather we
use a derivation system based on Corollary 2.1 that has a single inference rule. That rule is
the statement of the next theorem. In what follows by clause we mean a disjunctive clause,
which is a disjunction of literals.

Theorem 2.5 The following rule, called resolution, is sound:

(A ∨ P) , (B ∨ ¬P) � A ∨B,

where P is a literal and A and B are clauses.
Proof. The proof is left as an exercise.

When we use the resolution rule, we say that we have resolved the clauses A∨ P and
B ∨ ¬P, and that the resolution is on P. The clause A ∨B is called the resolvent.

Example 2.25 We can resolve Q ∨ P and R ∨ ¬P to obtain the resolvent Q ∨ R. �

Example 2.26 We can resolve P ∨ ¬Q ∨ R and ¬S ∨ Q to obtain the resolvent P ∨ R ∨
¬S. �

Example 2.27 If we resolve P and ¬P, we obtain an empty clause. Because P,¬P � False,
the resolvent of P and ¬P is False. �

To obtain a soundness proof using the resolution rule, we first write each premise in
the argument in conjunctive normal form using Algorithm 2.1. We then formulate the
argument whose premises consist of each clause in each premise plus clauses obtained from
the negation of the conclusion, and then we repeatedly use the resolution rule to derive
False. Our argument has then been shown to be sound due to Corollary 2.1.

i
i

i
i

i
i

i
i

28 Chapter 2 Propositional Logic

Example 2.28 To derive the modus ponens rule (A,A⇒ B � B) we first write the premises
in conjunctive normal form and make each clause a premise. Our resultant premises are as
follows:

A,¬A ∨B.

The conclusion is already in conjunctive normal form. Its negation is ¬B, which is added
as a premise. Our argument then proceeds as follows:

Derivation Rule

1 A Premise
2 ¬A ∨B Premise
3 ¬B Added premise derived from negation of conclusion
4 B Resolvent of 1 and 2
5 False Resolvent of 3 and 4

Because we have obtained False, we have a soundness proof due to Corollary 2.1. �

Notice that when we resolve ¬B with B, we obtain the empty clause, which is logically
equivalent to False. This result was shown in Example 2.27.

Example 2.29 To derive the hypothetical syllogism rule (A ⇒ B,B ⇒ C � A ⇒ C) we
first write the premises in conjunctive normal form and make each clause a premise. Our
resultant premises are as follows:

¬A ∨B,¬B ∨ C.

We then write the conclusion in conjunctive normal form as follows:

¬A ∨ C.

Using DeMorgan’s laws, the negation of the conclusion is A ∧ ¬C. Our premises based on
the negation of the conclusion are therefore

A, ¬C.

Our argument then proceeds as follows:

Derivation Rule

1 ¬A ∨B Premise
2 ¬B ∨ C Premise
3 A Added premise derived from negation of conclusion
4 ¬C Added premise derived from negation of conclusion
5 B Resolvent of 1 and 3
6 ¬B Resolvent of 2 and 4
7 False Resolvent of 5 and 6

�

When using resolution to obtain a soundness proof, we must resolve clauses in some
order. A human can choose an arbitrary order with the hope of getting to the conclusion.
However, to write a program we need a strategy that results in specific steps. One such
strategy is the set of support strategy. In this strategy the clauses are partitioned into two
sets, the auxiliary set and the set of support. The auxiliary set is formed in such a way

i
i

i
i

i
i

i
i

2.2 Resolution 29

that no two clauses in that set resolve to False. Ordinarily, the set of premises is such a
set, and therefore we let the auxiliary contain all the premises, while the set of support
includes clauses obtained from the negation of the conclusion. We then perform all possible
resolutions where one clause is from the set of support. The set of all resolvents obtained in
this way is added to the set of support. We then perform all possible resolutions where one
clause is from the new set of support. This step is repeated until we derive False or until
no further resolutions are possible. The set of support strategy is complete. Next we apply
the set of support strategy to the premises and conclusion in Example 2.19.

Example 2.30 Recall in Example 2.19 we had the following propositions:

P: Robbery was the reason for the murder.

Q: Something was taken.

R: Politics was the reason for the murder.

S: A woman was the reason for the murder.

T: The murderer left immediately.

U: The murderer left tracks all over the room.

Furthermore, we had these premises:

1 ¬Q Premise
2 P⇒Q Premise
3 ¬P⇒R∨S Premise
4 R⇒T Premise
5 U Premise
6 U⇒ ¬T Premise

We then concluded ¬S. We now use the set of support strategy for resolution to reach this
same conclusion:

Derivation Rule

1 ¬Q Premise
2 ¬P∨Q Premise
3 P∨R∨S Premise
4 ¬R∨T Premise
5 U Premise
6 ¬U∨¬T Premise
7 ¬S Added premise derived from negation of conclusion
8 P∨R Resolvent of 3 and 7
9 Q∨R Resolvent of 2 and 8
10 R Resolvent of 1 and 9
11 T Resolvent of 4 and 10
12 ¬U Resolvent of 6 and 11
13 False Resolvent of 5 and 12

�

i
i

i
i

i
i

i
i

30 Chapter 2 Propositional Logic

2.2.3 Resolution Algorithm

The following algorithm implements the set of support strategy for resolution that was
illustrated in Example 2.30.

Algorithm 2.2 Set of Support Resolution

Input: A set Premises containing the premises in an argument;
the Conclusion in the argument.
Output: The value True if Premises entail Conclusion; False otherwise.

Function Premises Entail Conclusion (Premises, Conclusion);
Set of Support = clauses derived from the negation of Conclusion;
Auxiliary Set = clauses derived from Premises;
New = { };
repeat

Set of Support = Set of Support ∪New;
for each clause C in Set of Support

for each clause D in Auxiliary Set ∪ Set of Support
Resolvents = set of clauses obtained by resolving C and D;
if False ∈ Resolvents

return True;
else

New = New ∪Resolvents;
endif

endfor
endfor

until New ⊆ Set of Support;
return False;

2.3 Artificial Intelligence Applications

2.3.1 Knowledge-Based Systems

A knowledge-based system is a system consisting of the following:

1. A dataset called the knowledge base that contains knowledge about the domain of
interest.

2. An inference engine that processes the knowledge to solve a problem.

Often knowledge-based systems are expert systems, which are systems that make the
judgment or decisions of an expert. For example, a system that performs medical diagnosis
and possibly recommends treatment options or further testing is a medical expert system.

Rather than discussing knowledge-based systems further in the abstract, we present an
example of an application written without a knowledge base, note its shortcomings, and
then show how a knowledge-based system addresses these shortcomings.

Example 2.31 Suppose Mary the botanist is trying to identify a plant based on information
supplied to her over the Internet to her colleague Ralph. Because she cannot see the plant,
she must ask the colleague questions in order to obtain the facts needed to identify the
plant. Plants are classified according to type, class, and family. Within a type there are
many classes, and within a class there are many families. A portion of a tree representing the

i
i

i
i

i
i

i
i

2.3 Artificial Intelligence Applications 31

Shrub

Tree

Herb

Vine

Angiosperm

Gmnosperm

Cypress

Pine

Bald Cypress

Stem is woody

Position is upright

There is one main

trunk

Leaves are not

broad and flat

Leaf shape is

scalelike

Stem is woody

Position is upright

There is one main

trunk

Leaves are not

broad and flat

Leaf shape is

scalelike

Leaf pattern is two

even lines with a

silvery band or leaf

pattern is random

Stem is woody

Position is upright

There is one main

trunk

Leaves are not

broad and flat

Leaf shape is

needlelike

Leaf pattern is two

even lines with no

silvery band

Figure 2.1 A portion of a classifcation tree for plants.

classification scheme appears in Figure 2.1. Each leaf of the tree contains a family and the
description of the family. To determine the family of the current plant, Mary could start by
describing a cypress to Ralph. She could first ask if the stem was woody. If the answer were
yes, she could ask if the position was upright. If the answer were no, she would conclude
that the family was not cypress. She could then proceed to ask questions concerning pines.
Although this procedure would work, there is a lot of redundancy in the questions. Because
all trees have upright position, once Mary ascertained that the position was not upright, she
would know that the type was not tree. So a better strategy would be to first ask questions
that narrowed down the type. For instance, if Mary learned that the stem was woody and
the position was upright, she would then ask if there was one main trunk. If the answer
to this question was then yes, she would know that the type was tree. She would then ask
questions that would determine the type of the plant. A portion of the decision tree (not
to be confused with the decision trees introduced in Chapter 9) appears in Figure 2.2. The
entire decision tree would be an expert system for determining the family of the plant. �

There are two problems with the decision tree approach just introduced. First, expert
systems are often developed by eliciting information or knowledge from an expert. It may be
difficult for a botanist, for example, to identify the entire decision tree from the top down
needed for a classification system. Second, even if the entire tree was developed, if a mistake
were made and information needed to be added or deleted it would be necessary to break

i
i

i
i

i
i

i
i

32 Chapter 2 Propositional Logic

Stem woody or green?

Type is herb.

..................?
Position upright or creeping?

Type is vine.

...................?
Is there one main trunk?

Type is tree.

Are leaaves broad and flat?

Type is shrub.

...................?

Class is gymnosperm.

Is leaf shape needlelike or scalelike?

Class is angiosperm.

...................?

Is pattern random or

two even lines?
Family is cypress.

Family is pine. Is there a silvery band?

Family is pine. Family is bald cypress.

green woody

creeping upright

yes no

needlelike scalelike

random two even lines

yes no

Figure 2.2 A portion of a decision tree for identifying the family of a plant.

edges in the tree and perhaps add new ones. So, the tree would need to be reconstructed
each time it was necessary to change the knowledge in the system.

It seems that experts may have their knowledge locally organized among closely con-
nected attributes. For example, Mary might know that all plants that have woody stems,
stand upright, and have one main trunk are trees. We can express this knowledge as follows:

IF stem is woody
AND position is upright
AND there is one main trunk
THEN type is tree.

The preceding is an item of knowledge expressed as an IF-THEN rule. Often it is
easier for a knowledge engineer (one whose specialty is creating expert systems) to elicit
localized rules such as this from an expert than it is to elicit an entire system all at once.
Mary might also know that all trees that have broad and flat leaves are gymnosperms. The
rule representing this knowledge is

IF type is tree
AND leaves are broad and flat
THEN class is gymnosperm.

The collection of all these items of knowledge, or rules, is called a knowledge base. The
knowledge base that contains the knowledge in the decision tree in Figure 2.2 appears in
Table 2.3. This is only a portion of a knowledge base for an expert system that determines

i
i

i
i

i
i

i
i

2.3 Artificial Intelligence Applications 33

Table 2.3 A Subset of the Rules in an Expert System That Determines the Family of a
Plant

1. IF class is gymnosperm
AND leaf shape is scalelike
THEN family is cypress.

2. IF class is gymnosperm
AND leaf shape is needlelike
AND pattern is random
THEN family is pine.

3. IF class is gymnosperm
AND leaf shape is needlelike
AND pattern is two even lines
AND silvery band is yes
THEN family is pine.

4. IF class is gymnosperm
AND leaf shape is needlelike
AND pattern is two even lines
AND silvery band is no
THEN family is bald cypress.

5. IF type is tree
AND broad and flat is yes
THEN class is angiosperm.

6. IF type is tree
AND broad and flat is no
THEN class is gymnosperm.

7. IF stem is green
THEN type is herb.

8. IF stem is woody
AND position is creeping
THEN type is vine.

9. IF stem is woody
AND position is upright
AND one main trunk is yes
THEN type is tree.

10. IF stem is woody
AND position is upright
AND one main trunk is no
THEN type is shrub.

i
i

i
i

i
i

i
i

34 Chapter 2 Propositional Logic

the family of a plant. For a particular rule, the IF portion is called the antecedent of
the rule and the THEN portion is called the conclusion. Each individual clause in the
antecedent is called a premise.

The knowledge base is simply a collection of separate items of knowledge. It does not
entail any particular way for using this knowledge. A mechanism that exploits the knowledge
to solve a problem is called an inference engine. Next we discuss two well-known inference
engines for rule-based systems.

2.3.1.1 Backward Chaining

Backward chaining is an inference engine that can use the rules in Table 2.3 to ask the
same sequence of questions as in Figure 2.2. That is, if we wish to determine the family of
the plant, backward chaining cycles through the rules until it finds one whose conclusion
concerns family. Rule 1 in Table 2.3 is such a rule. If both premises in the rule are true, we
know from the combination rule and modus ponens (Table 2.2) that the family is cypress.
So backward chaining tries to determine whether these premises are true. How can it do
this? By again using the rules. That is, to determine whether the class is gymnosperm, it
again cycles through the rules looking for one whose conclusion determines the family. Rule
5 is such a rule. If Rule 5 can determine that the class is angiosperm, then the premises in
Rule 1 are not all true, and backward chaining should go on to another rule to determine the
family. So next, backward chaining tries to determine whether the premises in Rule 5 are
true. To do this it cycles through the rules looking for one whose conclusion determines the
type. Rule 9 is such a rule. Next, backward chaining tries to determine whether its premises
are true by cycling through the rules looking for one that determines the properties of the
stem. There is no such rule. This means that the user (in our example, Ralph) should be able
to determine whether the current premise is true or false. So backward chaining asks Ralph
whether the stem is woody. Notice that this is the same question asked first in Figure 2.2.
If Ralph answers yes, backward chaining asks questions about the next premise in Rule 9. If
he answers no, backward chaining looks for another rule that determines the type. Suppose
Ralph answers yes to all the premises in Rule 9. Backward chaining then determines that
the type is a tree, and goes back to Rule 5 to determine whether the other premises in
Rule 5 are true. If it learns that the leaves are broad and flat, it the concludes that the
class is angiosperm. Backward chaining then goes back to Rule 1 and, finding that the first
premise is false, gives up on that rule and goes on to Rule 2 to determine the family. The
algorithm proceeds in this manner until one of the rules eventually determines the family
or it is learned that Ralph cannot supply enough information to solve the problem. This
procedure is called backward chaining because of the way it backs up from rules that
contain as their conclusion the information desired by the user, to rules containing premises
that the user is asked to verify.

An algorithm for backward chaining follows. In a given clause, the feature in the clause
is called an attribute. For example, the attribute in the clause “class is gymnosperm” is
“class.” The attribute, whose value is requested by the user, is the initial goal. Function
Backchain tries to determine the value of that attribute by finding a rule whose conclusion
concerns that attribute. When it finds such a rule, it tries to determine whether the premises
in the rule are true. For each premise in the rule, Backchain calls itself recursively with
the attribute in the premise being the next goal. Once the algorithm learns the value of an
attribute, that fact is saved in a set of true assertions so that the algorithm does not try to
determine that value again. For example, if the user says that the “stem is woody,” that
assertion is saved in the set of true assertions.

i
i

i
i

i
i

i
i

2.3 Artificial Intelligence Applications 35

Algorithm 2.3 Backward Chaining

Input: The user’s goal Goal and information requested of the user.
Output: The value of the user’s goal if it can be determined; otherwise “unknown.”

Function Backchain(Goal);
var Assertion, Rule, Next Goal, Premise, True Assertion,

All Premises True;

if there is an assertion in Assertion List with Goal as its attribute
Assertion = that assertion;

else
Assertion = Null;

if Assertion = Null
Rule = first rule;
while Assertion = Null and there are more rules

if Goal = attribute in the conclusion of Rule
All Premises True = False;
Premise = first premise in the antecedent of Rule;
repeat

Next Goal = attribute in Premise;
True Assertion = Backchain(Next Goal);
if Premise = True Assertion

Premise = next premise in the antecedent of Rule;
if Premise = Null

All Premises True = True;
endif

until All Premises True or Premise 6= True Assertion;
if All Premises True

Assertion = conclusion of Rule;
endif
Rule = next rule;

endwhile
if Assertion = Null

prompt user for value of Goal;
read V alue;
if V alue 6= Null

Assertion = Goal “is” Value;
else

Assertion = Goal “is unknown”;
endif
add Assertion to Assertion List;

endif
if Goal = User Goal

if Assertion = Goal “is unknown”
write “You cannot answer enough questions to determine ” Goal;

else
write Assertion;

endif
return Assertion;

i
i

i
i

i
i

i
i

36 Chapter 2 Propositional Logic

At the top level Backchain is called as follows:

Empty(Assertion List); // Make the Assertion List empty.
write “Enter your goal.”;
read User Goal;
Assertion = Backchain(User Goal);

Our backward chaining algorithm can be enhanced considerably. First, we should impose
certain restrictions on the rules. One restriction is that the knowledge base should not
contain rules that are circular. For example, if A, B, and C represent propositions, we
should not have the following rules:

IF A THEN B IF B THEN C IF C THEN A.

Such a set of rules simply means that A, B, and C are always true simultaneously. The
existence of such a set of rules in our knowledge base could cause the backward chaining
algorithm to run in an infinite loop. Therefore an error check for cyclic rules should be
included in the algorithm.

Another restriction on the rules is that there should not be contradictory rules. For
example, we should not have the following two rules:

IF A THEN B IF A THEN NOT B.

A third rule restriction is best illustrated with an example. Suppose that we have the
following two rules:

IF A AND B AND C THEN D IF A AND B THEN D.

The set of premises in the second rule is said to subsume the set of premises in the first
rule. That is, if both A and B are true, we can conclude D regardless of the value of C.
Therefore the first rule is superfluous and should be eliminated.

There exist other enhancements besides rule restrictions. One such enhancement is that
we could allow the user to inquire as to why a question is being asked. For example, if
the user wants to know why we are asking if stem is woody, the system could answer that
it is because we are trying to determine the type of the plant (say, using Rule 9 in Table
2.3), and Rule 9 can tell us the type if we can determine the nature of the stem and other
attributes. If the user then wanted to know why we need to know the type, the system
could answer that it is because we are trying to determine the class of the plant (say, using
Rule 5 in Table 2.3), and Rule 5 can tell us the class if we can determine the type and other
attributes. The systems could continue in this manner as long as the user asks questions.

Computationally, backward chaining is inefficient compared to a simple implementation
of the decision tree in Figure 2.2. However, our goal is to separate the control structure from
the knowledge base. The reason for this is to permit items of knowledge to be added and
deleted freely as the system is being developed. Once the knowledge base is fully developed,
the system can be converted to a decision tree that can be used in practice.

2.3.1.2 Forward Chaining

Suppose our botanist Mary received an email containing a description of the plant, and her
job was to deduce as much as possible from the description. For example, the email might
state the following facts:

The stem is woody.

The position is upright.

i
i

i
i

i
i

i
i

2.3 Artificial Intelligence Applications 37

There is one main trunk.

The leaves are not broad and flat.

She would not go through the questioning process shown in Figure 2.2. Rather she would
apply her knowledge to deduce as much as possible. Because the stem is woody, the position
is upright, and there is one main trunk, she would conclude the type is tree. Next, because
the leaves are not broad and flat, she would conclude that the class is gymnosperm. This
is all she could conclude from the facts in the email. We can accomplish the same result by
applying an inference engine called forward chaining to the knowledge base. In forward
chaining we start by putting all our true assertions in an assertion list. Then we cycle
through the rules starting with the first one. If all the premises in a rule are in the assertion
list (i.e., they are true), then the conclusion must be true and so we add the conclusion to
the assertion list. Because a conclusion of one rule can be a premise in another rule, we
must start over at the first rule each time we add a conclusion to the assertion list. An
algorithm for forward chaining follows.

Algorithm 2.4 Forward Chaining

Input: A set Assertion List of true assertions.
Output: The set Assertion List with all assertions that can be deduced

by applying the rules to the input added to it.

Procedure Forward Chain (var Assertion List);
var Rule;

Rule = first rule;
while there are more rules

if all premises in Rule are in Assertion List
and conclusion in Rule is not in Assertion List

add conclusion of Rule to Assertion List;
Rule = first rule;

else
Rule = next rule;

endwhile

The above procedure can be made more efficient by sorting the rules before doing forward
chaining. The sorting scheme is as follows. If rule A’s conclusion is a premise in Rule B’s
antecedent, then we place rule A before rule B. Assuming we do not have circular rules, this
is always possible. With the rules sorted in this manner, there is no need to return to the
first rule when a conclusion is added to the true assertion list.

2.3.1.3 Using Forward Chaining in a Configuration System

A configuration system is one that arranges parts into some whole. For example, a
system that arranges grocery items in grocery bags is a configuration system. Suppose we
wish to create a robot that does this task. The set of rules in Table 2.4 is a portion of the
rules the robot might use to perform this task. Note that these are action rules expressed
using propositional logic. In an action rule if the premises are true, we take the action
that makes the conclusion true. We will illustrate bagging groceries by applying forward
chaining to these rules using the groceries in Table 2.5. The “bagged?” entry is set to “Yes”
when an item is bagged.

i
i

i
i

i
i

i
i

38 Chapter 2 Propositional Logic

Table 2.4 A Subset of the Rules in a System for Bagging Groceries

1. IF step is Bag large items
AND there is a large item to be bagged
AND there is a large bottle to be bagged
AND there is a bag with <6 items
THEN put the large bottle in the bag.

2. IF step is Bag large items
AND there is a large item to be bagged
AND there is a bag with <6 items
THEN put the large item in the bag.

3. IF step is Bag large items
AND there is a large item to be bagged
THEN start a fresh bag.

4. IF step is Bag large items
THEN step is Bag medium items.

5. IF step is Bag medium items
AND there is a medium item to be bagged
AND there is a bag with <10 medium items
AND that bag contains 0 large items
AND the medium item is frozen
AND the medium item is not in an insulated bag
THEN put the medium item in an insulated bag.

6. IF step is Bag medium items
AND there is a medium item to be bagged
AND there is a bag with <10 medium items
AND that bag contains 0 large items
THEN put the medium item in the bag.

7. IF step is Bag medium items
AND there is a medium item to be bagged
THEN start a fresh bag.

8. IF step is Bag medium items
THEN step is Bag small items.

9. IF step is Bag small items
AND there is a small item to be bagged
AND there is a bag that is not full
THEN put the small item in the bag.

10. IF step is Bag small items
AND there is a small item to be bagged
THEN start a fresh bag.

11. IF step is Bag small items
THEN halt.

i
i

i
i

i
i

i
i

2.3 Artificial Intelligence Applications 39

Table 2.5 A Set of Items to Be Bagged

Item Container Size Frozen Bagged?
Soda Bottle Large No No
Bread Bag Medium No No
Ice cream Carton Medium Yes No
Detergent Box Large No No
Eggs Carton Small No No
Popsicles Insulated Bag Medium Yes No

Large items are bagged first, medium items next, and small items last. We assure that
large items are bagged first by initially setting

Step = Bag large items.

Next we look at the rules. Rules 1 and 2 both require the truth of the assertion “there is
a bag with <6 large items.” Because we have not gotten any bags yet, this assertion is not
true. Rule 3 requires that “step is Bag large items” and that “there is a large item to be
bagged.” Because both these assertions are true, the rule triggers, and we start a fresh bag,
Bag 1. We then return to the start of the rules, and again look for a rule whose premises are
all true. Notice that the premises in each of rules 1 through 4 are all true. In this situation
we say that there is a conflict as to which rule to trigger. A smart bagger would always
put bottles on the bottom of the bag because a bottle could damage another item if placed
on it. Rule 1 concerns bagging bottles. To makes sure this rule triggers we use a type of
conflict resolution called specificity ordering.

Definition 2.10 Specificity Ordering. If the set of premises of one rule is a superset of
the set of premises of another rule, then the first rule is triggered on the assumption that it
is more specialized to the current situation.

We can efficiently implement specificity ordering by sorting the rules so that the rule
with more premises appears first. This has been done in Table 2.4.

So rule 2 triggers because all the premises in the other three rules are subsets of the
premises in rule 2. We therefore place the bottle of soda in Bag 1 and mark that the soda
has been bagged. Looking at the rules again, we now notice that the premises in rules 2, 3,
and 4 are all true. According to specificity ordering, rule 2 now triggers. So the detergent is
placed in Bag 1 and the detergent is marked as having been bagged. Looking again at the
rules, we see that only the premises in rule 4 are true. The rule therefore triggers to change
the values of Step to Bag medium items. By using the variable Step, we separate the rules
into disjoint subsets; only the rules in a given subset are active at any particular time. This
is an example of conflict resolution called context limiting.

Definition 2.11 Context Limiting. Separate the rules into disjoint subsets. Only the
rules in one subset are active at any particular time. The context is changed to a new
context by a rule in the current context.

The rules for medium items will now trigger until there are no more medium items.
Notice that we have written the rules so that a medium item is never placed in a bag with
a large item. After the medium items are all bagged, the context is changed to the set of
rules for bagging small items. We can place a small item in any available bag. After all
small items are bagged, rule 11 halts execution.

There are other conflict resolution strategies, including the following:

i
i

i
i

i
i

i
i

40 Chapter 2 Propositional Logic

Table 2.6 A Subset of the Rules in a System for Diagnosing Automobile Problems

1. IF the car does not start
AND the engine does not turn over
AND and the lights do not come on
THEN the problem is battery.

2. IF the car does not start
AND the engine does turn over
AND and the engine is getting enough gas
THEN the problem is spark plugs.

3. IF the car does not start
AND the engine does not turn over
AND the lights do come on
THEN the problem is the starter motor.

4. IF there is gas in the fuel tank
AND there is gas in the carburetor
THEN the engine is getting enough gas.

Definition 2.12 Recency Ordering. The rule that has triggered most recently has the
highest priority, or the rule that has triggered least recently has the highest priority. The
choice depends on the particular application.

Definition 2.13 Priority Ordering. Order the rules according to the priority with which
they should trigger.

2.3.1.4 Using Forward and Backward Chaining in a Diagnostic System

Diagnosis is the process of determining or analyzing the cause or nature of a problem.
A diagnostic system is one that performs diagnosis. The classical example of diagnosis
is medical diagnosis in which we are trying to determine the disease that is causing some
manifestations. However, there are many other types of diagnoses. For example, an auto
mechanic tries to diagnose the problem with an automobile. We illustrate a rule-based
diagnostic system using this latter example.

Table 2.6 shows a subset of the rules in a system for diagnosing automobile problems.
Suppose Melissa observes the following facts about her car:

The car does not start.

The engine does turn over.

There is gas in the fuel tank.

There is gas in the carburetor.

If we use forward chaining, rule 4 will trigger first because both its premises are true,
and we will conclude that

The engine is getting gas.

Now all three premises in rule 2 are true. So it will trigger and we will conclude that

i
i

i
i

i
i

i
i

2.3 Artificial Intelligence Applications 41

The problem is spark plugs.

Melissa may not observe that there is gas in the fuel tank or that there is gas in the
carburetor. She might only notice that the car does not start but the engine does turn
over. If this is the case, forward chaining will conclude nothing. Backward chaining better
addresses this situation. Using goal-driven backward chaining, we start with each rule that
concludes a problem and see if we can draw the conclusion in the rule. Suppose the user
enters the following knowledge:

The car does not start.

The engine does turn over.

Rule 1 is tried first, but it does not trigger because one of its premises is false. Next, rule 2
is tried. Its first two premises are true, and there is a rule (rule 4) that concludes its third
premise. So we backchain to rule 4 and check its premises. Neither of them is true and
there is no rule for either of them. So we now prompt the user for their values. Melissa now
knows to check these matters because she is prompted. Suppose she observes the following:

There is gas in the fuel tank.

There is gas in the carburetor.

Rule 4 now triggers and we conclude

The engine is getting enough gas.

We now return to rule 2 and conclude that

The problem is spark plugs.

An actual production system may use both forward chaining and backward chaining
in turn. That is, it could first use forward chaining to conclude all that it can based on
the user’s initial knowledge. If that is not enough to make a diagnosis, it could then use
goal-driven backward chaining.

In many complex diagnostic problems such as medical diagnosis, we cannot be sure of our
conclusions. For example, based on a patient’s manifestations, a physician may determine
that is highly probable the patient has bronchitis, less probable that the patient has lung
cancer, and only slightly probable that the patient has both diseases. To develop a diagnostic
system that performs this type of reasoning, we need probability theory rather than logic.
Section 7.7 shows such a system.

2.3.2 Wumpus World

The wumpus world is a simple environment that has components similar to those found
in many real environments. A sample wumpus world appears in Figure 2.3. The world
consists of a 4-by-4 grid. An agent begins in the lower left-hand corner. The agent can
move up, down, left, or right. The agent’s goal is to get to the square containing the gold,
but there are dangers along the way. The only things the agent knows are its location and
information it gathers as it moves from square to square. The specifics of the environment
are as follows:

1. An evil wumpus is in one of the squares. If the agent enters that square, the wumpus
will kill the agent.

i
i

i
i

i
i

i
i

42 Chapter 2 Propositional Logic

Start
Pit

PitPit

Wumpus
Breeze

Breeze Breeze

Breeze

Stench

Breeze

Gold

Stench

Breeze

Agent

Stench

1

1

2 3 4

2

3

4

Figure 2.3 A wumpus world.

2. There is a stench in each square adjacent to the square containing the wumpus. The
agent perceives this stench if the agent enters this square.

3. Several of the squares contain pits. If the agent enters a square containing a pit, the
agent will fall into the pit and die.

4. There is a breeze in any square adjacent to a pit. The agent perceives this breeze if
the agent enters this square.

5. There is gold in one of the squares. The agent perceives the gold if the agent is in this
square.

6. The agent has one arrow that it can shoot in any of the four directions. The arrow
will go in a straight line. If it hits the wumpus, the wumpus will be killed and the
agent will perceive a moan.

7. The agent’s goal is to arrive, in as few moves as possible, at the square containing the
gold and stop. If the agent dies along the way, the quest is over.

We can think of the wumpus world as a computer game in which the final score is −n
if the agent dies, 0 if the agent gives up without finding the gold, and n minus number of
moves needed to find the gold if the agent eventually finds it (n is the maximum number of
moves allowed). Suppose you were asked to play this game for the wumpus world in Figure
2.3. You do not see the entire grid. You are initially in square [1,1], and all you know is your
location and that you have no perceptions. Let’s discuss how you might reason logically
to get to the gold. Because you have no perceptions, you conclude that squares [1,2] and
[2,1] are both OK (safe). You move to square [1,2] (we index the column first), and you
perceive a stench. So you conclude the wumpus is either in square [1,3] or square [2,2]. To
be safe, you back up into square [1,1] and move to square [2,1]. Because there is no stench,

i
i

i
i

i
i

i
i

2.3 Artificial Intelligence Applications 43

you conclude the wumpus is not in square [2,2], which means it must be in square [1,3].
Because there are no perceptions, you conclude that squares [3,1] and [2,2] are both OK.
You move to square [3,1], and you perceive a breeze. So to be safe, you back up into square
[2,1]. Because you have already visited square [1,1], you move to square [2,2]. You continue
in this manner until you reach the gold.

For the wumpus world in Figure 2.3 there is a path to the gold such that the agent needs
to only visit squares that are known to be OK to reach it. In each occurrence of the world,
the locations of the wumpus and pits are randomly generated. In some worlds, the agent
will have to visit squares not known to be OK to proceed toward the gold but can still get
to the gold, while in other occurrences it is impossible to reach the gold.

In general, a goal describes a situation or result that is desirable and toward which effort
can be directed. Our agent’s goal in the wumpus world is to arrive at the gold. Next, we
develop a sequence of software agents designed to accomplish this goal.

2.3.2.1 The Environment

Suppose first that your task is to develop a wumpus world game that others can play on the
computer. You would need to generate locations of the wumpus and the pits, and then store
this information in a file we will call environment. You could implement this environment
in a number of ways. For our discussion purposes, it is best to show it as a grid like the one
in Figure 2.3. As the individual plays the game, you need to present perceptions in a given
square when the individual enters the square. For example, if the individual enters square
[4,2], you present G42 and B42, where G42 denotes that there is gold in square [4,2] and B42

denotes that there is a breeze in square [4,2].

2.3.2.2 Software Agents

Suppose next that your task is to develop a software agent that searches for the gold in the
environment you created. The agent performs moves in a sequence of time slots. Next we
discuss different types of possible agents starting with the simplest type.

Reflex Agent A reflex agent does not maintain any model of the world. It bases each
move only on the perceptions it receives in each time slot. The agent needs the following
two files:

1. Knowledge base

2. Action rules

In general, the knowledge base1 contains information about the environment that the
agent learns from its perceptions and by doing inference. In the case of a simple reflex
agent, the knowledge base in each time slot is simply the set of perceptions in the time slot.
The action rules contains rules determining the action the agent executes in each time
slot. We use both context limiting and priority ordering to fire the rules. When the agent
is, for example, in the context of square [2,2], only the rules for that square fire. The rules
fire in the order in which they are listed. Because the agent’s goal is to arrive at the gold
and stop, we want the preference order for the rules to be aimed toward achieving this goal.
Therefore, the first rule should be to stop if the agent is in the square with the gold. After
that, based on only the current perceptions, the only action that is better than a random

1Note that this usage of the term knowledge base is different from that forwarded in Section 2.3.1. Before,
the knowledge base consisted of a set of rules used to deduce new items of information. Here we are saying
the knowledge base consists of the items of information themselves.

i
i

i
i

i
i

i
i

44 Chapter 2 Propositional Logic

Table 2.7 Action Rules for a Reflex Agent (Rules for when we are in the context of square
[2,2] are shown.)

...
A22∧W22 ⇒ agent dies
A22∧P22 ⇒ agent dies
A22∧G22 ⇒ gold found, stop
A22 ⇒ shoot arrow randomly left, right, up, or down
A22 ⇒ move randomly left, right, up, or down

...

move is to shoot the arrow in an arbitrary direction. So that is our second rule. The third
rule is a move in a random direction. Table 2.7 shows such action rules for a reflex agent.
When action “move right” is executed, the agent’s location for the next time slot is set to
the square to the right of the current square. So if the agent is currently in square [2,2],
the agent will be in square [3,2] in the next time slot. An algorithm showing the behavior
of such an agent simply cycles through a sequence of time slots and in each time slot fires
the first rule in the current context whose premises are all true. An algorithm for such an
agent follows.

Algorithm 2.5 Reflex Agent

Procedure Reflex;
A11 = True;
repeat

Knowledge Base = set of perceptions in this time slot;
fire action rules Rulesij such that Aij = True;

until stop is executed or agent is dead;

A Model-Based Agent A model-based agent maintains a model of the world in
its knowledge base. The perceptions in each time slot are added to the knowledge base
rather than replacing what is in it. Furthermore, the agent maintains a set of deduction
rules that it uses to deduce new facts to also add to the knowledge base in each time
slot. Table 2.8 shows the deduction rules for square [2,2]. There would be a set of such
rules for every square. When the agent enters a square, its new perceptions are added to
the knowledge base, and the deduction rules are applied to the knowledge base to draw all
possible conclusions and add these conclusions to the knowledge base. This can be done in
an automated way using resolution as discussed in Section 2.2, or by using forward chaining
to add new facts to the knowledge base, followed by backward chaining to deduce which
squares are OK.

However, for the sake of illustration, we show how the knowledge base is updated using
the inference rules in Table 2.2 rather than using an automated method. Suppose the agent
has already visited square [1,2], backed up into square [1,1], and is about to visit square
[2,1]. Assuming the agent has deduced all that is possible, Figure 2.4(a) shows the state of
the knowledge base at this point in time. The question marks by the wumpus in squares
[1,3] and [2,2] mean that the knowledge base contains the following information:

W13 ∨W22.

After the agent moves into square [2,1] and does not perceive a stench or a breeze, we reason
as follows:

i
i

i
i

i
i

i
i

2.3 Artificial Intelligence Applications 45

Start

Wumpus ?

Stench

Agent

1

1

2 3 4

2

3

4

Wumpus ?OK

OKOK

(a)

Start

Wumpus

Stench

Agent

1

1

2 3 4

2

3

4

OK

OK

OK

(b)

OK

OK

Visited

Visited

Visited

Visited

Visited

Figure 2.4 The state of the knowledge right before the agent moves to square [2,1] appears
in (a), and its state after that move and inference is completed appears in (b).

1. Using ¬S21, rule ¬S21 ⇒ ¬W11 ∧ ¬W31 ∧ ¬W22 and modus ponens, we conclude

¬W11 ∧ ¬W31 ∧ ¬W22.

2. Using ¬W11 ∧ ¬W31 ∧ ¬W22 and and elimination, we conclude

¬W11, ¬W31, ¬W22.

3. Using ¬B21, rule ¬B21 ⇒ ¬P11 ∧ ¬P31 ∧ ¬P22 and modus ponens, we conclude

¬P11 ∧ ¬P31 ∧ ¬P22.

4. Using ¬P11 ∧ ¬P31 ∧ ¬P22 and and elimination, we conclude

¬P11, ¬P31, ¬P22.

5. Using ¬W31, ¬P31, ¬W22, ¬P22, and and introduction, we conclude

¬W31 ∧ ¬P31, ¬W22 ∧ ¬P22.

6. Using ¬W31∧¬P31, ¬W22∧¬P22, rules ¬W31∧¬P31 ⇒ OK31, ¬W22∧¬P22 ⇒ OK22,
and modus ponens, we conclude

OK31, OK22.

7. Using W13∨ W22, ¬W22, and disjunctive syllogism, we conclude

W13.

Figure 2.4(b) show the state of the knowledge base after these conclusions are added to it.
After a model-based agent adds conclusions to the knowledge base, it must decide on its

action. Next we discuss two ways of doing this.

i
i

i
i

i
i

i
i

46 Chapter 2 Propositional Logic

Table 2.8 Deduction Rules for Square [2,2]

...
1. S22 ⇒W12∨ W21∨ W32∨ W23

2. ¬S22 ⇒ ¬W12 ∧ ¬W21 ∧ ¬W32 ∧ ¬W23

3. B22 ⇒P12∨ P21∨ P32∨ P23

4. ¬B22 ⇒ ¬P12 ∧ ¬P21 ∧ ¬P32 ∧ ¬P23

5. ¬W22 ∧ ¬P22 ⇒ OK22

...

Rule-Based Agent A rule-based, model-based agent determines its next action ac-
cording to a set of rules like a reflex agent. So like a reflex agent it needs a knowledge base
and action rules. However, it also needs a set of deduction rules, which it uses to update the
knowledge base in each time slot. The deduction rules appear in Table 2.8. So the agent
needs the following files:

1. Knowledge base

2. Deduction rules

3. Action rules

As was the case for the reflex agent, we use context limiting and priority ordering to
fire the action rules. However, now the agent has a much larger knowledge base (all the
perceptions and everything that could be deduced). Given this knowledge, a reasonable set
of action rules and strategy for prioritizing them is as follows:

1. If the gold is in the current square, stop.

2. If the wumpus or a pit is in the current square, die.

3. If there is an adjacent square that is OK and unvisited, move to that square.

4. If there is an adjacent square that is OK and has not been visited in one of the last
six time slots, move to that square.

5. If the wumpus is located left, right, up, or down, shoot the arrow in that direction.

6. If the wumpus is possibly located left, right, up, or down, shoot the arrow in that
direction.

7. If there is an adjacent square that is not known to not be OK, move to that square.

In rule 4 we require that there be an adjacent square that has not been recently visited
to avoid going back and forth repeatedly when there are still possible successful paths to
explore. Again we use context limiting to only fire the rules pertinent to the current square,
and we use priority ordering as just described. The algorithm follows.

Algorithm 2.6 Rule Based Agent

Procedure Rule Based;
A11 = true;

i
i

i
i

i
i

i
i

2.3 Artificial Intelligence Applications 47

1

1

2 3 4

2

3

4

OK

(a)

Visited

OK

Visited

OK

Visited

Agent

OK

Visited

OK

Visited

OK

Visited

OK

Visited

OK

Visited

OK

Visited

OK OK

A

Ok

V

2,2

Ok

V
2,1

Ok

V
3,2

Ok

V
2,3

Ok

V
4,2

Ok

V
3,3

Ok

V
2,4

Ok

V
4,3 Ok1,4

(b)

Ok

V
1,1

Figure 2.5 A possible state of knowledge is in (a) and a breadth-first tree that determines
a shortest route to an unvisited, OK square based on that knowledge is in (b).

repeat
Knowledge Base = Knowledge Base ∪ set of new perceptions;
using Deduction Rules and Knowledge Base,

add all possible deductions to Knowledge Base;
fire action rules Rulesij such that Aij = true;

until stop is executed or agent is dead;

Planning Agent A plan is a sequence of actions aimed at achieving a goal. Our rule-
based agent decides on each move individually in each time slot based on reasonable criteria;
it does not plan a sequence of moves. A planning, model-based agent develops a plan
for executing a sequence of moves. Next we describe such an agent.

The agent’s goal is to the reach the gold, and only an unvisited square could possibly
contain the gold. So a reasonable sub-goal would be to arrive at an unvisited, OK square.
Furthermore, we would want to do this in as few moves as possible and only go through
OK squares (called a safe route). Our agent’s plan is therefore to find such a safe route if
one exists. This can be accomplished with a breadth-first tree search as illustrated in
Figure 2.5.

Figure 2.5(a) shows a possible current state of knowledge of the environment, and Figure
2.5(b) shows the breadth-first tree search that finds a shortest safe route to an unvisited
OK square. The root (level 0) of the tree contains the agent’s location. At level 1 of the
tree we visit OK squares adjacent to the root. At level 2 of the tree we visit OK squares
adjacent to level 1 squares, at level 3 we visit OK squares adjacent to level 2 squares, and so
on. We only visit OK squares that are not already in the tree. We prune a node in the tree
whenever there are no eligible squares adjacent to it. We continue until there are no nodes
to expand (there is no possible safe route to an unvisited, OK square), or until we reach
an unvisited, OK square. The node concerning square [1,1] at level 2 is pruned because the
only OK square adjacent to it is square [2,1] which is already in the tree when square [1,1]
is visited. The node concerning square [3,3] is also pruned because the only OK squares
adjacent to it are already in the tree (by the time we investigate expanding that node). The
shortest safe route to an unvisited, OK square is found to be one leading to square [1,4].

If there is no safe route to an unvisited, OK square, the agent’s next course of action
could be to plan a shortest safe route to a square which has a good chance of enabling the

i
i

i
i

i
i

i
i

48 Chapter 2 Propositional Logic

agent to kill the wumpus. If that is not possible, the agent could look for a shortest safe
route to an unvisited square that is not known to not be OK. Finally, the agent could look
for a shortest route to an unvisited square that is not known to not be OK, which only goes
through squares that are not known to be not OK. If this is not possible, the agent should
give up as there is no way to reach the gold.

The algorithm follows.

Algorithm 2.7 Planning Agent

Procedure Planning;
A11 = true;
repeat

Knowledge Base = Knowledge Base ∪ set of new perceptions;
using Deduction Rules and Knowledge Base,

add all possible deductions to Knowledge Base;
if there is a current plan

perform next action in that plan;
else

develop a new plan if possible and execute first action in the plan;
if the current square contains the gold

stop;
else if the current square contains the wumpus or a pit

die;
until stop is executed or agent is dead or there is no plan;

2.3.2.3 More Complex Wumpus World

We presented a very simple version of the wumpus world. Both the environment and the
tasks required of the agent could be made more complex. For example, the agent could be
required to turn and face a direction before moving in that direction, or the agent could
be required to pick up the gold and return back to square [1,1] in order to succeed. The
environment could include several squares containing gold or containing a wumpus, or the
wumpus could be allowed to move.

2.4 Discussion and Further Reading

In the procedural approach to system design, the steps that accomplish the desired task
are hard-coded in the program. We would be using this approach if we directly coded the
decision tree in Figure 2.2. In the declarative approach, the knowledge is separated from
the reasoning. This is the approach taken when we used forward chaining and backward
chaining to reason with rules, and when we developed wumpus algorithms that reasoned with
knowledge bases. Boden [1977] provides an early discussion of the two approaches, while
Newell [1981] discusses the problem of representation and knowledge. The two approaches
are contrasted further in [Brooks, 1991], [Nillson, 1991], and [Shaparau et al., 2008].

XCON [McDermott, 1982] was a system that operated in a fashion similar to our grocery
bagger. The system configured Digital Equipment Corporation’s VAX computers. Since
then propositional logic has been used to actually design computer hardware. For example,
Norwick et al. [1993] discuss the design of a high-performance cache controller.

Yob [1975] developed the wumpus world. Williams et al. [2003] develop an agent similar
to the wumpus that plans actions and diagnoses faults for NASA aircraft. Besides running

i
i

i
i

i
i

i
i

Exercises 49

programs, this agent uses the circuit-based approach, which is to transmit signals in
hardware circuits instead of running standard computer programs [Rosenschein, 1985].

EXERCISES

Section 2.1

Exercise 2.1 Determine which of the following are propositions:

1. ¬P∧Q∧R.

2. ¬P∧Q∧∧R.

3. ¬¬P∧Q⇒R.

4. ¬ (¬P ∧Q)⇒R.

5. ¬ (¬P∧)Q⇒R.

Exercise 2.2 Write the following statements about the real world as propositions. Use the
atomic propositions shown.

1. If Joe is in his office, we will tell Joe the news; otherwise we will leave him a message.

P: Joe is in his office.

Q: We will tell Joe the news.

R: We will leave Joe a message.

2. If the operation succeeds and if Mary follows the doctor’s instructions, she will be fine.

P: The operation succeeds.

Q: Mary follows the doctor’s instructions.

R: Mary will be fine.

3. An employee is eligible for a 3-week vacation if 1) the employee is a non-union worker
who does not receive vacation pay and who has been with the company for at least a
year; or 2) the employee is a union worker who has been with the company at least 6
months.

P: The employee is eligible for a 3-week vacation.

Q: The employee is a non-union worker.

R: The employee does not receive vacation pay.

S: The employee has been with the company for at least a year.

T: The employee is a union worker.

U: The employee has been with the company for at least 6 months.

Exercise 2.3 Develop truth tables for the following propositions:

1. ¬P∧Q∨R.

i
i

i
i

i
i

i
i

50 Chapter 2 Propositional Logic

2. P∧Q∨R⇒S.

3. ¬ (¬P ∧Q)⇒R.

4. (P∨(¬(Q∨R) ∧ ¬P)

Exercise 2.4 Consider the following statement, which often appears on a sign in a liquor
store: You must be 21 years old to purchase liquor.

1. Express this statement as a proposition using logic. Develop the truth table for the
proposition.

2. Does the truth table for this proposition entail what the store owner intended?

3. Create a new statement that you feel expresses what the store owner intended.

4. Express the new statement as a proposition and develop a truth table for the propo-
sition. Check whether the truth table entails what the store owner intended.

Exercise 2.5 Determine whether each of the following propositions is a tautology, contra-
diction, or neither.

1. P∨Q∧¬P.

2. (P ∨Q) ∧ ¬P.

3. (P ∧Q) ∧ ¬P.

Exercise 2.6 Simplify the following propositions using the laws in Table 2.1.

1. R⇒Q∧ ((P ∧ ¬Q) ∨ (P⇒ Q)) .

2. ¬P∧R∧¬(P∧¬(P∨Q)).

Exercise 2.7 Derive the following argument using the inference rules in Table 2.2.

P ∨Q, P⇒ R, Q⇒ R � R.

Exercise 2.8 Consider the following argument. It was either Joe or Amit who stole the
laptop. Joe was out of town when it was stolen. If Joe was out of town, he could not have
been at the scene of the crime. If Joe was not at the scene of the crime, he could not have
stolen the laptop. Therefore, Amit must have stolen the laptop. Using the inference rules
in Table 2.2, derive this argument. Use these atomic propositions:

P: Joe stole the laptop.

Q: Amit stole the laptop.

R: Joe was out of town.

S: Joe was not at the scene of the crime.

i
i

i
i

i
i

i
i

Exercises 51

Section 2.2

Exercise 2.9 Write the following proposition in conjunctive normal form:

P ∨Q⇒ R ∧ (R⇒ P).

Exercise 2.10 Derive the modus tolens rule using refutation and a truth table.

Exercise 2.11 Derive the modus tolens rule using the resolution rule.

Exercise 2.12 Use the set of support strategy for the argument in Exercise 2.8.

Section 2.3

Exercise 2.13 Finish bagging the groceries in Table 2.5.

Exercise 2.14 Create a rule base for a mini-classification system. For example, the system
could determine the type of an animal or a mineral based on its description; or it could
determine the drink for a patron of a bar based on the individual’s particular preferences.

Exercise 2.15 Create a rule base for a mini-configuration system. The system could be an
enhancement of the grocery bagger. For example, consideration could be given to placing
crushable items such as potato chips on the top.

Exercise 2.16 Create a rule base for a mini-diagnostic system. For example, the system
could determine the problem with an automobile or a DVD player.

Exercise 2.17 Consider the wumpus world in Figure 2.3. Show the first 5 moves and the
state of the knowledge base after each move for each of the following types of agents (note
that the answers may not be unique):

1. The reflex agent described in the text.

2. The rule-based agent described in the text.

3. The planning agent described in the text.

Exercise 2.18 Write a program that generates environments for the wumpus world and
presents perceptions to an agent. Write a program for an agent that tries to find the gold
in each world. Your agent need not be exactly like any of those presented in the text. For
example, it could be a planning agent that likes to take more risk by visiting a closer square
not known to be not OK over a more distant unvisited OK square.

i i

Chapter 3

First-Order Logic

All fish are mortal.

I am mortal.

Therefore, I am a fish???

Chapter 2 started with a variation of a classic example concerning Socrates. Traditionally,
the example actually proceeds as follows:

All humans are mortal.

Socrates is a human.

Therefore, Socrates is mortal.

The reasoning here is that every entity in the set of humans is mortal, Socrates is in that
set, and so Socrates is mortal. Propositional logic is only concerned with propositions that
are true or false; it does not address properties of sets of objects. First-order logic, also
called predicate calculus, models reasoning with sets of objects.

Section 3.1 discusses the basic properties of first-order logic, while Section 3.2 shows
artificial intelligence applications of first-order logic.

3.1 Basics of First-Order Logic

Like propositional logic, first-order logic consists of a formal language with a syntax and
semantics that give meaning to the well-formed strings. We start by discussing its syntax
and semantics.

i
i

i
i

i
i

i
i

54 Chapter 3 First-Order Logic

3.1.1 Syntax

The alphabet of first-order logic contains the following symbols:

1. Constants: A constant is a symbol like ‘Socrates’, ‘John’, ‘B’, and ‘1’.

2. Predicates: The symbols ‘True’ and ‘False’ and other symbols like ‘married’, ‘love’,
and ‘brother’.

3. Functions: Symbols like ‘mother’, ‘weight’, and ‘height’.

4. Variables: A variable is a lower-case alphabetic character like x, y, or z.

5. Operators: ¬,∨,∧,⇒,⇔ .

6. Quantifiers: The symbols ∀ (for all) and ∃ (there exists).

7. Grouping symbols: The open and closed parentheses and the comma.

The constant, predicate, and function symbols are called non-logical symbols. Tradi-
tionally, philosophers/logicians assumed the existence of a fixed, infinite set of non-logical
symbols. According to this approach, there is only one language of first-order logic. In mod-
ern artificial intelligence applications, we specify non-logical symbols that are appropriate
to the application. This specified set is called a signature.

The rules for creating well-formed strings are as follows:

1. A term is one of the following:

(a) A constant symbol

(b) A variable symbol

(c) A function symbol followed by one or more terms separated by commas and
enclosed in parentheses

2. An atomic formula is one of the following:

(a) A predicate symbol

(b) A predicate symbol followed by one or more terms separated by commas and
enclosed in parentheses

(c) Two terms separated by the = symbol

3. A formula is one of the following:

(a) An atomic formula

(b) The operator ¬ followed by a formula

(c) Two formulas separated by ∨,∧,⇒, or ⇔

(d) A quantifier following by a variable followed by a formula

4. A sentence is a formula with no free variables.

i
i

i
i

i
i

i
i

3.1 Basics of First-Order Logic 55

Rule 4 bears clarification. Consider the following formulas:

∀x love(x, y) ∀x tall(x). (3.1)

We discuss shortly what formulas like this mean. Currently, we present them to clarify the
definition of a sentence. A variable in a formula is free if it is not quantified by the ∀ or
the ∃ symbol; otherwise it is bound. The formula on the left in Expression 3.1 contains
the free variable y and therefore is not a sentence, whereas the formula on the right does
not contain any free variables and therefore is a sentence.

Mathematically, this is all there is to say about the formal language of first-order logic.
However, like propositional logic, first-order logic was developed to make statements about
the real world and to reason with these statements. The next examples illustrate such
statements.

Example 3.1 As discussed more formally in the next section, in first-order logic we have a
domain of discourse. This domain is a set and each element in the set is called an entity.
Each constant symbol identifies one entity in the domain. For example, if we are considering
all individuals living in a certain home, our constant symbols could be their names. If there
are five such individuals, the constant symbols might be ‘Mary’, ‘Fred’, ‘Sam’, ‘Laura’, and
‘Dave’. �

Example 3.2 A predicate denotes a relationship among a set of entities or a property of a
single entity. For example,

married(Mary,Fred)

denotes that Mary and Fred are married, and

young(Sam)

denotes that Sam is young. The number of arguments in a predicate is called its arity. The
predicate ‘married’ has arity two while the predicate ‘young’ has arity one. �

Example 3.3 If our application is considering the five individuals mentioned in Example
3.1, and we are only concerned with discussing whether any of them are married and whether
any of them are young, then our signature would consist of the constant symbols ‘Mary’,
‘Fred’, ‘Sam’, ‘Laura’, and ‘Dave’ and the predicates ‘married’ and ‘young’, where ‘married’
has arity two and ‘young’ has arity one. �

Example 3.4 A function denotes a mapping from some subset of entities to a single entity.
For example, if the value of

mother(Laura)

is ‘Mary’, this means that Mary is the mother of Laura. If the value of

sum(2,3)

is 5, this means that the sum of 2 and 3 is 5. �

Example 3.5 The operators ¬,∨,∧,⇒, and⇔ have the same meaning they have in propo-
sitional logic. For example,

¬married(Mary,Fred)

denotes that Mary and Fred are not married. The formula

¬married(Mary,Fred) ∧ young(Sam)

denotes that Mary and Fred are not married and that Sam is young. �

i
i

i
i

i
i

i
i

56 Chapter 3 First-Order Logic

Example 3.6 The equality operator is used to denote that two terms refer to the same
entity. For example,

Mary = mother(Laura)

denotes that Mary and mother(Laura) refer to the same entity. That is, Mary is the mother
of Laura. �

Example 3.7 The quantifier ∀ denotes that some formula is true for all entities in the
domain of discourse. For example, suppose our domain consists of the five individuals
named Mary, Fred, Sam, Laura, and Dave. The formula

∀x young(x)

denotes that Mary, Fred, Sam, Laura, and Dave are all young. �

Example 3.8 The quantifier ∃ denotes that some formula is true for at least one entity in
the domain. Suppose again that our domain consists of the five individuals named Mary,
Fred, Sam, Laura, and Dave. The formula

∃x young(x)

denotes that at least one of Mary, Fred, Sam, Laura, and Dave is young. �

3.1.2 Semantics

In first-order logic we first specify a signature, which determines the language. Given a
language, a model has the following components:

1. A nonempty set D of entities called a domain of discourse.

2. An interpretation, which consists of the following:

(a) An entity in D is assigned to each of the constant symbols. Ordinarily, every
entity is assigned to a constant symbol.

(b) For each function, an entity is assigned to each possible input of entities to the
function.

(c) The predicate ‘True’ is always assigned the value T, and the predicate ‘False’ is
always assigned the value F.

(d) For every other predicate, the value T or F is assigned to each possible input of
entities to the predicate.

Example 3.9 Suppose our application is considering the five individuals mentioned in Ex-
ample 3.1, and we are only concerned with discussing whether any of them are married and
whether any of them are young. Our signature can be as follows:

1. Constant Symbols = {Mary, Fred, Sam, Laura, Dave }.

2. Predicate Symbols = {married, young}. The predicate ‘married’ has arity two and
the predicate ‘young’ has arity one.

One particular model has these components:

1. The domain of discourse D is the set of these five particular individuals.

i
i

i
i

i
i

i
i

3.1 Basics of First-Order Logic 57

2. The interpretation is as follows:

(a) A different individual is assigned to each of the constant symbols.

(b) The truth value assignments are given by these tables:

x Mary Fred Sam Laura Dave
young(x) F F T T T

y
x Mary Fred Sam Laura Dave

Mary F T F F F
Fred T F F F F
Sam F F F F F

Laura F F F F F
Dave F F F F F

married(x, y)

�

Example 3.10 Suppose our application is considering the three individuals named Dave,
Gloria, and Ann, and we are concerned with discussing the mother of each individual and
whether each individual loves the other. Our signature can be as follows:

1. Constant Symbols = {Dave, Gloria, Ann}.

2. Predicate Symbols = {love}. The predicate ‘love’ has arity two.

3. Function symbols = {mother}. The function ‘mother’ has arity one.

One particular model has these components:

1. The domain of discourse D is the set of these three particular individuals.

2. The interpretation is as follows:

(a) A different individual is assigned to each of the constant symbols.

(b) The truth value assignments are given by this table:

y
x Dave Gloria Ann

Dave F F F
Gloria T T T
Ann T T F

love(x, y)

(c) The function assignments are given by this table:

x Dave Gloria Ann
mother(x) Gloria Ann -

i
i

i
i

i
i

i
i

58 Chapter 3 First-Order Logic

Notice that no assignment is made for the mother of Ann. Technically, every entity must
be assigned a value by a function. If Ann’s mother is not one of the entities, we can simply
use a dummy symbol like the dash (-) as our assignment. In practice, we do not ordinarily
reason with first-order logic by completely specifying a model. So we need not concern
ourselves with this nuance. Note further that a binary predicate need not be symmetric.
Gloria loves Dave but Dave does not love Gloria. �

Once a model is specified, the truth values of all sentences are assigned according to the
following rules:

1. The truth values for sentences developed with the symbols ¬,∧,∨,⇒, and ⇔ are
assigned in the same way as done in propositional logic.

2. The truth value for two terms connected by the = symbol is T if both terms refer to
the same entity; otherwise it is F.

3. The truth value for ∀x p(x) has value T if p(x) has value T for every assignment to x
of an entity in the domain D; otherwise it has value F.

4. The truth value for ∃x p(x) has value T if p(x) has value T for at least one assignment
to x of an entity in the domain D; otherwise it has value F.

5. The operator precedence is as follows: ¬,=,∧,∨,⇒, ⇔ .

6. The quantifiers have precedence over the operators.

7. Parentheses change the order of the precedence.

Example 3.11 Suppose our application is considering the four individuals Socrates, Plato,
Zeus, and Fido, and we are interested in discussing whether they are human, mortal, and
have legs. Our signature can be as follows:

1. Constant Symbols = {Socrates, Plato, Zeus, Fido}.

2. Predicate Symbols = {human, mortal, legs}. All predicates have arity one.

Let the model have these components:

1. D is the set of these four particular individuals.

2. The interpretation is as follows:

(a) A different individual is assigned to each of the constant symbols.

(b) The truth value assignments are given by this table:

x Socrates Plato Zeus Fido
human(x) T T F F
mortal(x) T T F T

legs(x) T T T T

Then we have the following:

1. The sentence
human(Zeus) ∧ human(Fido) ∨ human(Socrates)

has value T because ∧ takes precedence over ∨.

i
i

i
i

i
i

i
i

3.1 Basics of First-Order Logic 59

2. The sentence

human(Zeus) ∧ (human(Fido) ∨ human(Socrates))

has value F because we changed the order of precedence with the parentheses.

3. The sentence
∀x human(x)

has value F because human(Zeus) = F and human(Fido) = F.

4. The sentence
∀x mortal(x)

has value F because mortal(Zeus) = F.

5. The sentence
∀x legs(x)

has value T because legs(x) = T for every assignment to x.

6. The sentence
∃x human(x)

has value T because human(Socrates) = T and human(Plato) = T.

7. The sentence
∀x (human(x)⇒ mortal(x))

has value T. The following table shows this:

x human(x) mortal(x) human(x) ⇒ mortal(x)
Socrates T T T

Plato T T T
Zeus F F T
Fido F T T

�

Example 3.12 Suppose we have the model and interpretation in Example 3.10. Recall
that the truth value assignments in that interpretation are given by this table:

y
x Dave Gloria Ann

Dave F F F
Gloria T T T
Ann T T F

love(x, y)

Then we have the following:

1. The sentence
∃x ∀y loves(x, y)

has value T because love(Gloria,y) has value T for every value of y. This sentence
means that there is someone who loves everybody. It is true because Gloria loves
everyone.

i
i

i
i

i
i

i
i

60 Chapter 3 First-Order Logic

2. The sentence
∀x ∃y loves(x, y)

has value F because love(Dave,y) does not have value T for any value of y. This
sentence means that everyone loves someone. It is false because Dave does not love
anyone. �

3.1.3 Validity and Logical Implication

The notions of a tautology and a fallacy in propositional logic extend to first-order logic.
We have the definitions that follow.

Definition 3.1 If sentence s has value T under interpretation I, we say that I satisfies s,
and we write I � s. A sentence is satisfiable if there is some interpretation under which it
has value T.�

Example 3.13 The sentence
human(Socrates)

is satisfied in any interpretation that assigns T to human(Socrates). �

Example 3.14 The sentence
∀x human(x)

is satisfied in any interpretation that assigns T to human(x) for every individual x in the
domain of discourse. �

If a formula contains free variables (and therefore is not a sentence), then an interpreta-
tion alone does not determine its truth value. We extend the definition of satisfiability to
such formulas as follows.

Definition 3.2 A formula that contains free variables is satisfied by an interpretation if
the formula has value T regardless of which individuals from the domain of discourse are
assigned to its free variables.�

Example 3.15 The formula
loves(Socrates, y)

is satisfied by any interpretation that assigns T to loves(Socrates, y) for every individual y
in the domain of discourse. �

Definition 3.3 A formula is valid if it is satisfied by every interpretation.�

Clearly, every tautology is a valid formula. Other examples of valid statements follow.

Example 3.16 The sentence

human(Socrates) ∨ ¬human(Socrates)

is valid. A simple truth table shows this. �

Example 3.17 The sentence

∀x (human(x) ∨ ¬human(x))

is valid. �

i
i

i
i

i
i

i
i

3.1 Basics of First-Order Logic 61

Example 3.18 The formula

loves(Socrates, y) ∨ ¬loves(Socrates, y)

is valid. Regardless of which individual in the domain of discourse is assigned to y, the
formula is true in every interpretation. So it is valid. �

Definition 3.4 A sentence is a contradiction if there is no interpretation that satisfies
it.�

Example 3.19 The sentence

∃x (human(x) ∧ ¬human(x))

is not satisfiable under any interpretation and is therefore a contradiction. �

Definition 3.5 Given two formulas A and B, if A ⇒ B is valid, we say that A logically
implies B and we write AV B.�

Example 3.20 It is left as an exercise to show that

human(Socrates) ∧ (human(Socrates)⇒ mortal(Socrates))V mortal(Socrates).

�

Definition 3.6 Given two formulas A and B, if A⇔ B is valid, we say that A is logically
equivalent to B and we write A ≡ B.�

Example 3.21 It is left as an exercise to show that

human(Socrates)⇒ mortal(Socrates) ≡ ¬human(Socrates) ∨mortal(Socrates).

�

It is left as an exercise to prove the following theorem concerning logical equivalence of
quantified expressions.

Theorem 3.1 The following logical equivalences hold. (A and B are variables denoting
arbitrary predicates. Furthermore, they could have other arguments besides x.):

1. ¬∃x A(x) ≡ ∀x ¬A(x)

2. ¬∀x A(x) ≡ ∃x ¬A(x)

3. ∃x (A(x) ∨B(x)) ≡ ∃x A(x) ∨ ∃x B(x)

4. ∀x (A(x) ∧B(x)) ≡ ∀x A(x) ∧ ∀x B(x)

5. ∀x A(x) ≡ ∀y A(y)

6. ∃x A(x) ≡ ∃y A(y)

Equivalences 1 and 2 are DeMorgan’s laws for quantifiers. Intuitively, Equivalence 1 holds
because if A(x) is false for every x then it cannot be true for any x. The other equivalences
can readily be made clear with similar intuitive explanations.

i
i

i
i

i
i

i
i

62 Chapter 3 First-Order Logic

3.1.4 Derivation Systems

Similar to propositional logic, in first-order logic an argument consists of a set of formulas,
called the premises, and a formula called the conclusion. We say that the premises entail
the conclusion if in every model in which all the premises are true, the conclusion is also
true. If the premises entail the conclusion, we say the argument is sound; otherwise we
say it is a fallacy. A set of inference rules is called a deduction system. A deduction
system is sound if it only derives sound arguments. A deduction system is complete if it
can derive every sound argument. Gödel’s famous first incompleteness theorem proves that
in general there is no complete deduction system in first-order logic. However, its discussion
is beyond the scope of this text. Briefly, Gödel showed that there are statements about the
natural numbers that cannot be proved.

We write arguments showing the list of premises followed by the conclusion as follows:

1. A1

2. A2

...

n. An

B

If the argument is sound, we write

A1, A2, . . . , An � B,

and if it is a fallacy, we write

A1, A2, . . . , An 2 B.

Next we provide some sound inference rules for first-order logic. First, all the rules
we developed for propositional logic (Table 2.2) can be applied in the first-order logic to
formulas containing no variables.

Example 3.22 Consider the following argument:

1. man(Socrates)

2. man(Socrates) ⇒ human(Socrates)

human(Socrates)

We have the following derivation for this argument:

Derivation Rule

1 man(Socrates) Premise
2 man(Socrates) ⇒ human(Socrates) Premise
3 human(Socrates) 1, 2, MP

�

The previous example is not very exciting because we just used the syntax of first-order
logic to stand for statements that we could have represented using the syntax of propositional
logic. Next we develop additional inference rules that only concern first-order logic.

i
i

i
i

i
i

i
i

3.1 Basics of First-Order Logic 63

3.1.4.1 Universal Instantiation

The universal instantiation (UI) rule is as follows:

∀x A(x) � A(t),

where t is any term. This rules says that if A(x) has value T for all entities in the domain
of discourse, then it must have value T for term t.

Example 3.23 Consider the following argument:

1. man(Socrates)

2. ∀x man(x) ⇒ human(x)

human(Socrates)

We have the following derivation for this argument:

Derivation Rule

1 man(Socrates) Premise
2 ∀x (man(x) ⇒ human(x)) Premise
3 man(Socrates) ⇒ human(Socrates) 2, UI
4 human(Socrates) 1, 3, MP

�

Example 3.24 Consider the following argument:

1. ∀x (father(Sam, x) ⇒ son(x, Sam) ∨ daughter(x, Sam))

2. father(Sam, Dave)

3. ¬daughter(Dave, Sam)

son(Dave, Sam)

We have the following derivation for this argument:

Derivation Rule

1 ∀x (father(Sam, x) ⇒ son(x, Sam) ∨ daughter(x, Sam)) Premise
2 father(Sam, Dave) Premise
3 ¬daughter(Dave, Sam) Premise
4 father(Sam, Dave) ⇒ son(Dave, Sam) ∨ daughter(Dave, Sam) 1, UI
5 son(Dave, Sam) ∨ daughter(Dave, Sam)) 2, 4, MP
6 son(Dave, Sam) 3, 5, DS

�

Note that t can be any term, including a variable. However, t cannot be a bound variable.
For example, suppose we have the following formula:

∀x∃y father(y, x).

We can use UI to conclude ∃y father(y,Dave), meaning that Dave has a father. Furthermore,
we can use UI to conclude ∃y father(y, z), meaning that the entity that is the value of z has
a father. However, we cannot use UI to conclude ∃y father(y,y), which would mean that
some entity is its own father.

i
i

i
i

i
i

i
i

64 Chapter 3 First-Order Logic

3.1.4.2 Universal Generalization

The universal generalization (UG) rule is as follows:

A(e) for every entity e in the domain of discourse � ∀xA(x).

This rule says that if A(e) has value T for every entity e, then ∀xA(x) has value T. The
rule is ordinarily applied by showing that A(e) has value T for an arbitrary entity e.

Example 3.25 Consider the following argument:

1. ∀x (study(x) ⇒ pass(x))

∀x (¬pass(x) ⇒ ¬study(x))

This argument says that if it is true that everyone who studies passes, then we can conclude
that everyone who did not pass did not study. We will use UG and the deduction theorem
(DT) to derive this argument:

Derivation Rule Comment

1 ∀x (study(x) ⇒ pass(x)) Premise
2 study(e) ⇒ pass(e) UI Substitute arbitrary entity e.
3 ¬pass(e) Assumption We assume ¬pass(e).
4 ¬study(e) 2, 3, MT
5 ¬pass(e) ⇒ ¬study(e) DT We discharge ¬pass(e).
6 ∀x ¬pass(x) ⇒ ¬study(x) UG

�

Notice in the previous example that we showed the conclusion had value T for an arbi-
trary entity e and then applied UG. If we only know that a formula has value T for a specific
entity, we cannot use UG. For example, if we only know young(Dave) or young(e) where
e represents a specific entity, we cannot use UG. An entity e introduced with existential
instantiation (which will be discussed shortly) is an example of a case where e represents a
specific entity.

3.1.4.3 Existential Generalization

The existential generalization (EG) rule is as follows:

A(e) � ∃x A(x),

where e is an entity in the domain of discourse. This rule says that if A(e) has value T for
some entity e, then ∃x A(x) has value T.

Example 3.26 Consider the following argument:

1. man(Socrates)

2. ∀x man(x) ⇒ human(x)

∃x human(x)

i
i

i
i

i
i

i
i

3.1 Basics of First-Order Logic 65

We have the following derivation for this argument:

Derivation Rule

1 man(Socrates) Premise
2 ∀x man(x) ⇒ human(x) Premise
3 man(Socrates) ⇒ human(Socrates) 2, UI
4 human(Socrates) 1, 3, MP
5 ∃x human(x) 4, EG

�

The variable x may not appear as a free variable in formula A(e) when we apply EG.
For example, suppose we know that father(x,e) has value T for some entity e. We cannot
conclude that ∃x father(x, x) as this would mean there is some entity that is its own father.
We would need to use another variable such as y and conclude that ∃y father(x, y).

3.1.4.4 Existential Instantiation

The existential instantiation (EI) rule is as follows:

∃x A(x) � A(e)

for some entity e in the domain of discourse. This rule says that if ∃x A(x) has value T,
then A(e) has value T for some entity e .

Example 3.27 Consider the following argument:

1. ∃x man(x)

2. ∀x man(x) ⇒ human(x)

∃x human(x)

We have the following derivation for this argument:

Derivation Rule

1 ∃x man(x) Premise
2 ∀x man(x) ⇒ human(x) Premise
3 man(e) 1, EI
4 man(e) ⇒ human(e) 2, UI
5 human(e) 3, 4, MP
6 ∃x human(x) 5, EG

�

The variable used in EI cannot appear elsewhere as a free variable. For example, suppose
we conclude man(e) using EI. We cannot later conclude monkey(e) using EI, for this would
mean e is both a man and a monkey. Rather, we must use a different variable such as f
and conclude monkey(f).

3.1.5 Modus Ponens for First-Order Logic

The next example illustrates how difficult inference can be if we only have the inference
rules developed so far.

i
i

i
i

i
i

i
i

66 Chapter 3 First-Order Logic

Example 3.28 Consider the following argument:

1. mother(Mary,Scott)

2. sister(Mary,Alice)

3. ∀x ∀y∀z mother(x, y) ∧ sister(x, z)⇒ aunt(z, y)

aunt(Alice,Scott)

We have the following derivation for this argument:

Derivation Rule

1 mother(Mary,Scott) Premise

2 sister(Mary,Alice) Premise

3 ∀x ∀y∀z mother(x, y) ∧ sister(x, z)⇒ aunt(z, y) Premise

4 mother(Mary,Scott)∧sister(Mary,Alice) 1, 2, CR

5 ∀y∀z mother(Mary, y) ∧ sister(Mary, z)⇒ aunt(z, y) 3, UI

6 ∀z mother(Mary,Scott) ∧ sister(Mary, z)⇒ aunt(z,Scott) 5, UI

7 mother(Mary,Scott) ∧ sister(Mary,Alice)⇒ aunt(Alice,Scott) 6, UI

8 aunt(Alice,Scott) 4 , 6, MP

�

We applied universal instantiation three times to reach our desired conclusion in the
previous example. It does not seem that a human would go to all this trouble to reach that
conclusion. Rather, a human would simply substitute Mary for x, Scott for y, and Alice for
z in the antecedent in Premise 3 in the argument and then conclude aunt(Alice,Scott). Next
we develop a version of modus ponens tailored to first-order logic that reasons like this.

3.1.5.1 Unification

We need to first develop the notion of unification.

Definition 3.7 Suppose we have two sentences A and B. A unification of A and B is
a substitution θ of values for some of the variables in A and B that make the sentences
identical. The set of substitutions θ is called the unifier.�

Example 3.29 Suppose that we have the two sentences loves(Dave, y) and loves(x,Gloria).
Then

θ = {x/Dave, y/Gloria}

unifies the two sentences into the sentence loves(Dave, Gloria). �

Example 3.30 Suppose that we have the two sentences parents(Dave, y, z) and parents(y,
Mary, Sam). Because the y variables in the two sentences are different variables, we rename
the second y variable as x to obtain the sentence parents(x, Mary, Sam). Then

θ = {x/Dave, y/Mary, z/Sam}

unifies the two sentences into the sentence parents(Dave,Mary,Sam). �

Example 3.31 We cannot unify the sentences parents(Dave, Nancy, z) and parents(y,
Mary, Sam) because Nancy and Mary are both constants and therefore cannot be substi-
tuted. �

i
i

i
i

i
i

i
i

3.1 Basics of First-Order Logic 67

Example 3.32 Suppose that we have the two sentences parents(x, father(x), mother(Dave))
and parents(Dave, father(Dave), y). Then

θ = {x/Dave, y/mother(Dave)}

unifies the sentences into the sentence parents(Dave, father(Dave), mother(Dave)).
�

Example 3.33 Suppose that we have the two sentences father(x, Sam) and father(y, z).
Then

θ1 = {x/Dave, y/Dave, z/Sam}

unifies the two sentences into the sentence father(Dave, Sam). Furthermore,

θ2 = {x/y , z/Sam}

unifies the two sentences into the sentence father(y, Sam). �

In the previous example, the second unifier is more general than the first because fa-
ther(Dave, Sam) is an instance of father(y, Sam). We have the following definition concern-
ing this relationship.

Definition 3.8 A unifier θ is a most general unifier if every other unifier θ′ is an instance
of θ in the sense that θ′ can be derived by making substitutions in θ.�

Unifier θ2 in Example 3.33 is a most general unifier. The following algorithm returns a
most general unifier of two sentences if they can be unified.

Algorithm 3.1 Unification

Input: Two sentences A and B; an empty set of substitutions θ.
Output: A most general unifier of the sentences if they can be unified;

otherwise failure.

Procedure unify(A, B, var θ);
scan A and B from left to right

until A and B disagree on a symbol or A and B are exhausted;
if A and B are not exhausted

let x and y be the symbols where A and B disagree;
if x is a variable

θ = θ ∪ {x/y};
unify(subst(θ,A), subst(θ,B), θ);

else if y is a variable
θ = θ ∪ {y/x};
unify(subst(θ,A), subst(θ,B), θ);

else
θ = Failure;

endif
endif

The preceding algorithm calls a procedure subst, which takes as input a set of
substitutions θ and a sentence A and applies the substitutions in θ to A.

Example 3.34 Suppose A is the sentence parents(Dave, y, z) and θ = {x/Dave, y/Mary,
z/Sam}. Then subst(A, θ) results in A being the sentence parents(Dave, Mary, Sam). �

i
i

i
i

i
i

i
i

68 Chapter 3 First-Order Logic

A variable cannot be replaced by a term containing the variable when we unify. For
example, we cannot make the substitution x/f(x). It is necessary to add a check for this
(called the occurs check) before the recursive calls in procedure unify ; the algorithm should
return failure if it occurs.

3.1.5.2 Generalized Modus Ponens

Next we present a generalized modus ponens rule for first-order logic. When using this
rule, we do not bother to use universal instantiation notation for the implication statement.
Rather, it is implicitly assumed. For example, we write

mother(x, y)⇒ parent(x, y)

instead of writing

∀x∀y mother(x, y)⇒ parent(x, y).

Suppose we have sentences A, B, and C, and the sentence A ⇒ B, which is implicitly
universally quantified for all variables in the sentence. The generalized modus ponens
(GMP) rule is as follows:

A⇒ B, C, unify(A,C, θ) � subst(B, θ).

Example 3.35 Consider the argument in Example 3.28:

1. mother(Mary,Scott)

2. sister(Mary,Alice)

3. ∀x ∀y∀z mother(x, y) ∧ sister(x, z)⇒ aunt(z, y)

aunt(Alice,Scott)

We have the following new derivation for this argument (in Step 3 universal quantification
is implicitly assumed):

Derivation Rule

1 mother(Mary,Scott) Premise
2 sister(Mary,Alice) Premise
3 mother(x, y) ∧ sister(x, z)⇒ aunt(z, y) Premise
4 mother(Mary,Scott) ∧ sister(Mary,Alice) 1, 2, CR
5 θ = {x/Mary, y/Scott, z/Alice)} unify antecedent in 3 and 4
6 aunt(Alice,Scott) 3, 4, 5, GMP

�

3.2 Artificial Intelligence Applications

Next we discuss some applications of first-order logic to artificial intelligence.

i
i

i
i

i
i

i
i

3.2 Artificial Intelligence Applications 69

Table 3.1 Action Rules for a Reflex Agent in the Wumpus World Expressed Using First-
Order Logic

...
∀i∀j A(i, j)∧W(i, j)⇒ agent dies
∀i∀j A(i, j)∧P(i, j)⇒ agent dies
∀i∀j A(i, j)∧G(i, j)⇒ gold found, stop
∀i∀j A(i, j)⇒ shoot arrow randomly left, right, up, or down
∀i∀j A(i, j)⇒ move randomly left, right, up, or down

...

3.2.1 Wumpus World Revisited

In Section 2.3.2 we showed action rules and deduction rules for negotiating the wumpus
world using propositional logic. We can express these rules much more concisely using first-
order logic. For example, recall that Table 2.7 showed action rules for Square[2,2]. Using
propositional logic we would need to express a set of rules like this for every square. However,
using first-order logic we can express them all together as shown in Table 3.1. A(i, j) is a
predicate that is true if and only if the agent is in Square[i, j]. The other predicates have
similar meaning.

It would be troublesome to state the inference rules in Table 2.8 in this same way because
of the boundary conditions. For example, there is no square to the left of Square [1,2]. So a
stench in this square implies that the wumpus is in one of three other squares rather than one
of four. An alternative way to present the rules is to maintain a predicate Adjacent(i, j,k.m)
that is true if and only if Square[i, j] is adjacent to Square[k,m]. We can then write rule 1
in Table 2.8 as follows:

∀i∀j S(i, j)⇒ ∃k∃m Adjacent(i, j, k,m) ∧W(i, j).

We have suggested a couple of ways that first-order logic enables us to express rules for
negotiating the wumpus world. There is no “right” way to accomplish this. The point is
merely that first-order logic simplifies our task.

3.2.2 Planning

In Section 2.3.1.3 we used forward chaining with conflict resolution to guide a robot when
bagging groceries. Our goal was to bag the groceries in a way that would serve the shopper
best. For example, bottles were put on the bottom so other items did not get crushed.
However, we did not need to identify a plan for achieving our goal. Forward chaining simply
proceeded methodically performing actions in sequence without looking ahead. Recall from
Section 2.3.2.2 that a plan is a sequence of actions aimed at achieving a goal. In that section
we developed a planning agent for negotiating the wumpus world. Next we discuss planning
further.

3.2.2.1 The Blocks World

In the blocks world, a number of blocks are resting on a table, and some of the blocks are
stacked on top of each other. Figure 3.1 shows a possible configuration. Our robot has the
task of moving blocks in sequence to achieve some goal. For example, our goal may be that

i
i

i
i

i
i

i
i

70 Chapter 3 First-Order Logic

b

a

c e

d

Figure 3.1 The blocks world.

“block e rests on block b and block a rests on block e.” To enable the robot to achieve this
we need provide it with a plan. If we start with the situation in Figure 3.1, one such plan
is as follows.

1. Pick up block d

2. Put block d on the table

3. Pick up block a

4. Put block a on the table

5. Pick up block e

6. Put block e on block b

7. Pick up block a

8. Put block a on block e

We want to develop an algorithm that will yield such a plan. First we use predicate
calculus to describe the state of the world. To that end, we have the following predicates:

Predicate Meaning
on(x,y) Block x is on block y.
clear(x) Block x has nothing on top of it.
gripping(x) The robot is gripping block x;

gripping(nothing) is true if robot is not gripping any block.
ontable(x) Block x is on the table.

The state of the world in Figure 3.1 is described as follows:

ontable(b)

ontable(c)

i
i

i
i

i
i

i
i

3.2 Artificial Intelligence Applications 71

Table 3.2 Action Rules for the Blocks World

1. ∀x pickup(x) ⇒ (gripping(nothing) ∧ clear(x) ⇒ gripping(x))
2. ∀x putdown(x) ⇒ (gripping(x) ⇒ clear(x) ∧ ontable(x) ∧ gripping(nothing))
3. ∀x ∀y stack(x, y) ⇒ (gripping(x) ∧ clear(y) ⇒ gripping(nothing) ∧ on(x, y))
4. ∀x ∀y unstack(x, y) ⇒

(on(x, y) ∧ clear(x) ∧ gripping(nothing)⇒ gripping (x) ∧ clear(y))

ontable(e)

on(a,b)

on(d,e)

gripping(nothing)

Next we need action rules for changing the state of the world. They are expressed in
Table 3.2 using first-order logic.

These action rules mean that if we take the given action (make it true) stated as the
premise of the rule, then the conclusion of the rule becomes true. For example, in rule 1 if
we take the action to pickup(a), then if the robot is not gripping anything and a is clear,
the robot will end up gripping a.

Now that we can describe the state of the world and the actions for changing, we can
discuss developing a plan. One simple way to obtain a plan is to perform a breadth-first
search of possible moves. When we arrive at the state that is our goal, the plan is the
sequence of moves that led to that state. Figure 3.2 shows a portion of the search. The
problem with this method is that it becomes computationally unfeasible for large problem
instances. In Section 3.2.2.2 we discuss a way to address this problem.

The blocks world suffers from the frame problem, which concerns expressing using logic
those aspects of the world that remain unchanged by an action that changes the world for
the next time slot. The term fluent refers to an aspect of the world that changes over time,
and the term atemporal refers to aspects that do not change. For example, suppose we
perform unstack(a,b) for the world in Figure 3.1. Then the logical statement pertaining to
this operation entails that the robot is grasping a and that there is nothing on b. However,
it does not say anything about c, d, and e. They could be in the configuration shown in
Figure 3.1 (the one we expect), but they could also be in any other configuration.

One way to address this problem is to include frame rules that tell us what aspects are
not changed by the action. For example, we could have the following frame rule:

∀x ∀y ∀z unstack(y, z) ⇒ (ontable(x) ⇒ ontable(x)).

This rule says that if x is on the table before we unstack y from z, then it is still on the
table afterward.

3.2.2.2 PDDL and Macros

We use a version of Planning Domain Definition Language (PDDL) to address the
frame problem. In our version of the language, each state is represented by a conjunction of
fluents. For a given action, we list the preconditions (Pre), which are the conditions that
must be true for an action to be applied; the add list (Add), which are the fluents that are
added when the condition is applied; and the delete list (Del), which are the fluents that
are deleted when the action is applied. For example, the unstack(x,y) action is represented
as follows:

i
i

i
i

i
i

i
i

72 Chapter 3 First-Order Logic

b

a

c e

d

b

a

c e

d

b

a

c

e

d

b

a

c e

d

b

a

c

e

d

b

a

e

d

c

Figure 3.2 A portion of the state space tree when searching for a plan in the blocks world.

Pre: on(x, y) ∧ clear(x) ∧ gripping(nothing)
unstack(x, y) Add: gripping (x) ∧ clear(y)

Del: on(x, y) ∧ gripping(nothing)

We then solve the frame problem but assuming a frame axiom, which is that all fluents
that are not mentioned in the action description remain unchanged.

We can improve our breadth-first search by developing macro operators, which consist
of sequences of actions that might often be performed. For example, suppose we often wish
to invert two blocks when one rests on the other. The following macro accomplishes this:

Pre: on(x, y) ∧ clear(x) ∧ gripping(nothing)
invert(x, y) Add: on(y, x) ∧ clear(y)

Del: on(x, y) ∧ clear(x)
Actions: unstack(x, y); putdown(x); pickup(y); stack(y, x)

The Actions row shows the actions that comprise the macro. When searching, we not only
search over the basic actions, but also over the macros.

Both a PDDL and macros were in the Stanford University Institute Planning
System (STRIPS) [Fikes and Nilsson, 1971], which was developed by SRI International.
STRIPS was used to plan the actions of the SHAKEY robot in the 1970s.

3.2.2.3 Backward Search

The breadth-first search strategy shown in Figure 3.2 is a forward search in that it starts
with the current state of the world and looks forward trying to arrive at the desired state
of the world. Alternatively, we could facilitate the search by performing a backward search.
Similar to backward chaining, in a backward search we start with our goal, which is the
desired state of the world, and proceed backwards. For example, suppose the world is as
shown in Figure 3.1, and our goal is to invert blocks a and b. Then we start with the
conditions on(b,a) and clear(b), and see what action could arrive at this state. The action
is stack(b,a). Then we look at preconditions to this action. They are gripping(b) and

i
i

i
i

i
i

i
i

3.3 Discussion and Further Reading 73

clear(a). We next look at what actions could have led to these conditions, and continue in
this fashion.

The backward search strategy was employed in the teleo-reactive planning strategy that
was developed in [Nillson, 1994]. A teleo-reactive program is an agent control program
that robustly directs an agent toward a goal while continuously taking into account the
agent’s changing perceptions of a dynamic environment. Teleo-reactive planning has been
applied in a number of domains, including robot control [Benson, 1995], and for accelerator
beamline tuning [Klein et al., 2000]. Katz [1997] extended the teleo-reactive paradigm for
robotic agent task control using fuzzy logic [Zadeh, 1965].

3.3 Discussion and Further Reading

John McCarthy and Patrick Hayes identified the frame problem in “Some Philosophical
Problems from the Standpoint of Artificial Intelligence” [McCarthy and Hayes, 1969]. Mc-
Carthy proposed solving the problem by assuming that a minimal amount of changes has
occurred. The Yale shooting problem [Hanks and McDermott, 1987] demonstrates that this
solution is not always correct. Alternative solutions were then proposed, and in 1991, Reiter
solved the problem with successor-state axioms.

EXERCISES

Section 3.1

Exercise 3.1 What is the arity of the predicate parents(x, y, z)? For example, we may have
parents(Dave,Gloria,Mary).

Exercise 3.2 Describe the difference between a predicate and a function in first-order logic.

Exercise 3.3 Suppose our constant symbols are {Mary, Dave, Amit, Juan} and we have
the following truth value assignment:

x Mary Dave Amit Juan
young(x) F F T T

x Mary Dave Amit Juan
happy(x) T T T T

Which of the following are true sentences?

1. ∀x young(x).

2. ∃x young(x).

3. ∀x happy(x).

4. ∃x happy(x).

Exercise 3.4 Suppose our constant symbols are {Mary, Fred, Sam, Laura, Dave} and we
have the following truth value assignment:

i
i

i
i

i
i

i
i

74 Chapter 3 First-Order Logic

y
x Mary Fred Sam Laura Dave

Mary F T F T F
Fred T T F F F
Sam F T F F F

Laura F T F T F
Dave F T F F F

loves(x, y)

Which of the following are true sentences?

1. ∃x ∀y loves(x, y).

2. ∀x ∃y loves(x, y).

3. ∃y ∀x loves(x, y).

4. ∀y ∃x loves(x, y).

Exercise 3.5 Prove Theorem 3.1.

Exercise 3.6 Derive the following argument:

1. ∀x (father(Sam, x)∧father(x,Dave) ⇒ grandfather(Sam, Dave)

2. father(Sam, Ralph)

3. father(Ralph, Dave)

grandfather(Sam,Dave)

Exercise 3.7 Derive the following argument:

1. ∀x (father(Sam, x)∧father(x,Dave) ⇒ grandfather(Sam, Dave)

2. father(Sam, Ralph)

3. ¬grandfather(Sam, Dave)

¬father(Ralph,Dave)

Exercise 3.8 Derive the following argument:

1. ∀x (study(x) ∨ ¬pass(x))

∀x ¬(pass(x) ∧¬study(x))

Exercise 3.9 Derive the following argument:

1. ∀x (woman(x) ∨ man(x))

2. ¬man(Jennifer)

∃x woman(x)

Exercise 3.10 Derive the following argument:

1. ∃x (woman(x) ∨ man(x))

i
i

i
i

i
i

i
i

Exercises 75

2. ∀x ¬man(x)

∃x woman(x)

Exercise 3.11 Show a unification of mother(Mary,x) and mother(z,Sam).

Exercise 3.12 Show a unification of children(Virginia,Eileen,x) and children(x, y,Ralph).

Exercise 3.13 Derive the following argument using GMP:

1. parent(Mary,Tom,Ralph)

2. ¬sister(Tom, Ralph)

3. ∀x∀y∀z parent(x, y, z)⇒brother(y, z) ∨ sister(y, z)

brother(Tom,Ralph)

Section 3.2

Exercise 3.14 Write the rules in Table 2.8 using predicate calculus.

Exercise 3.15 Using PDDL, write a macro that takes as input two blocks x and y. If x is
on y and nothing is on x, the result of the macro is that both x and y end up on the table.

Exercise 3.16 Using PDDL, develop a macro that takes as input three blocks x, y, and z.
If x is on y and y is on z and nothing is on x, the effect of the macro is to invert all three
blocks so that y is on x and z is on y.

Exercise 3.17 Using PDDL, write a macro that takes as input two blocks x and y. As
long as neither block has a third block on it, the result of the macro is to end up with both
x and y on the table.

i i

Chapter 4

Certain Knowledge
Representation

Recall the wumpus introduced in Section 2.3.2. The knowledge deduced by this wumpus
consisted of simple facts about the environment such as whether there is a breeze in a
particular square. Similarly, the knowledge deduced by the systems discussed in Section
2.3.1 consisted of simple facts such as the type of a plant or the bag location of a particular
item. In these simply applications, there was little need to concern ourselves with an abstract
representation of the knowledge. However, in more complex domains, this is not case.
Knowledge representation is the discipline that represents knowledge in a manner that
facilitates drawing inference from the knowledge. In philosophy, ontology is the study of the
nature of existence and what is real. It concerns what entities can be said to exist, how they
can be categorized, and the relationships among the categories. In artificial intelligence, an
ontology is a representation of knowledge as a set of concepts and relationships that exist
among those concepts.

We introduce an ontology for representing certain knowledge called a semantic net. Then
we discuss frames that can be used to represent the knowledge in a semantic net. Finally,
we introduce nonmonotonic inference, which is an inference method that allows us to retract
conclusions in light of new evidence.

1The picture on this page was obtained from https://commons.wikimedia.org/wiki/File: Knowledge,
observation and reality.svg under the GNU Free Documentation License.

https://commons.wikimedia.org/wiki/File: Knowledge_observation and reality.svg under the GNU Free Documentation License
https://commons.wikimedia.org/wiki/File: Knowledge_observation and reality.svg under the GNU Free Documentation License

i
i

i
i

i
i

i
i

78 Chapter 4 Certain Knowledge Representation

4.1 Taxonomic Knowledge

Often the entities with which we reason can be arranged in a hierarchical structure or
taxonomy. We can represent this taxonomy using first-order logic. For example, suppose
we want to represent the relationships among all animals and their properties. We could
proceed as follows. First we represent subset (subcategory) information:

∀x bird(x)⇒animal(x)

∀x canary(x)⇒bird(x)

∀x ostrich(x)⇒bird(x)

...

Then we represent set (category) membership of entities:

bird(Tweety)

shark(Bruce)

...

Finally, we represent properties of the sets (categories) and entities:

∀x animal(x)⇒has skin(x)

∀x bird(x)⇒can fly(x)

...

Note that the members of a subset inherit properties associated with its superset. For
example, birds have skin because birds are a subset of animals and animals have skin.

4.1.1 Semantic Nets

It becomes cumbersome representing the taxonomy with first-order logic and the represen-
tation is not very transparent. A semantic net is a graph structure for representing the
same taxonomy. Figure 4.1 shows a subset of the semantic net representing the taxonomy for
all organisms. Both sets (categories) and entities are represented by nodes in the network.
There are three types of edges:

1. An edge from a subset to a superset. For example, there is an edge from bird to
animal.

2. An edge from an entity to the immediate set of which it is a member. For example,
there is an edge from Tweety to canary.

3. An edge from an entity or set to one of its properties. For example, there is an edge
from bird to has wings because birds have wings.

i
i

i
i

i
i

i
i

4.1 Taxonomic Knowledge 79

animal

bird fish

canary ostrich shark salmon

has skin
can move around
eats

breathes

has wings
can fly

has feathers

has fins

can swim

has gills

can sing

is yellow

has long

legs

is tall

can't fly

can bite

is

dangerous

is pink

is edible

swims

upstream

to lay eggs

Tweety Bruce

MemberOf MemberOf

SubsetOf SubsetOf

SubsetOfSubsetOf

SubsetOfSubsetOf

Figure 4.1 A semantic network.

We have inheritance in a semantic network. That is, unless a node has an edge to a
property, it inherits the property from its most recent ancestor that has an edge to that
property. For example, the node canary does not have an edge to a property concerning
flying. So it inherits that property from the node bird, which means canaries can fly. The
node ostrich has an edge to the property that it can’t fly; so it does not inherit that property
from the node bird.

There are difficulties with the inheritance properties in semantic nets. Most notably,
a node can inherit conflicting properties from two parent nodes. Consider the semantic
network in Figure 4.2. Because Nixon is a Quaker, he inherits the property that he is a
pacifist; and because he is a Republican, he inherits the conflicting property that he is not
a pacifist. Because of this difficulty, some object-oriented programming languages such as
Java do not allow multiple inheritance. Nonmonotonic logic, which is discussed in Section
4.3, addresses this difficulty by performing conflict resolution using prioritization.

4.1.2 Model of Human Organization of Knowledge

There is evidence that humans organize categorical knowledge in a semantic net. The
semantic net in Figure 4.1 was taken from [Collins and Quillan, 1969]. That paper concerned
reaction time studies in humans investigating how long it took humans to answer questions
such as “is a canary yellow?” Their studies indicated that this question can be answered
more quickly than the question “can a canary fly?” In general, the closer the information is
to the entity in the network, the more quickly the question can be answered. This supports
the hypothesis that humans actually structure knowledge in this hierarchy because if fewer
mental links needed to be traversed to retrieve the information, then the question should
be answered more quickly. Exception handling supported this hypothesis. For example,

i
i

i
i

i
i

i
i

80 Chapter 4 Certain Knowledge Representation

Quakers Republicans not

pacifists

Nixon

MemberOf

are

pacificists

MemberOf

Figure 4.2 This semantic net entails the conflict that Nixon is a pacifist and is not a
pacifist.

subjects could answer “can an ostrich fly?” more quickly than they could answer “does an
ostrich have feathers?”

4.2 Frames

A frame is a data structure that can represent the knowledge in a semantic net. After
showing the data structure, we present an example.

4.2.1 Frame Data Structure

The general structure of a frame is as follows:

(frame-name

slot-name1: filler1;

slot-name2: filler2;
...

)

Example 4.1 The first two frames of the frames representing the semantic net in Figure
4.1 are as follows:

(animal

SupersetOf: bird;

SupersetOf: fish;

skin: has;

mobile: yes;

eats: yes;

breathes: yes;

)

i
i

i
i

i
i

i
i

4.2 Frames 81

(bird
SubsetOf: animal;
SupersetOf: canary;
SupersetOf: ostrich;
wings: has;
flies: yes;
feathers: has;

) �

Note in the previous example that we put frame names in bold face.

4.2.2 Planning a Trip Using Frames

Suppose a traveling salesperson is planning a round-trip that visits several cities. There
are various components to the trip such as the means of travel, the cities visited, and the
lodging, We develop frames to represent the components and show how they can be used to
represent the plan for a trip.

We have the following general frames that are used to develop trips:

(Trip
FirstStep: TravelStep;
Traveler: human;
BeginDate: date;
EndDate: date;
TotalCost: price;

)

(TripPart
SupersetOf: TravelStep;
SupersetOf: LodgingStay;
BeginDate: date;
EndDate: date;
Cost: price;
PaymentMethod: method;

)

(TravelStep
SubsetOf: TripPart;
Origin: city;
Destination: city;
OriginLodgingStay: LodgingStay;
DestinationLodgingStay: LodgingStay;
FormofTransportation: travelmeans;
NextStep: TravelStep;
PreviousStep: TravelStep;

)

i
i

i
i

i
i

i
i

82 Chapter 4 Certain Knowledge Representation

(LodgingStay

SubsetOf: TripPart;

Place: city;

Lodging: hotel;

ArrivingTravelStep: TravelStep;

DepartingTravelStep: TravelStep;

)

Note that TravelStep and LodgingStay are both subsets of TripPart. So they inherit the
attributes in TripPart, namely BeginDate, EndDate, Cost, and PaymentMethod. Next we
develop a simple trip that starts at the home city Chicago, visits Melbourne, and returns
to Chicago.

(Trip1

MemberOf: Trip;

FirstStep: TravelStep1;

Traveler: Amit Patel;

BeginDate: 06/22/2011;

EndDate: 06/28/2011;

TotalCost: $6000;

)

(TravelStep1

MemberOf: TravelStep;

BeginDate: 6/22/2011;

EndDate: 6/23/2011;

Cost: $1500;

PaymentMethod: visa;

Origin: Chicago;

Destination: Melbourne;

OriginLodgingStay: Null;

DestinationLodgingStay: LodgingStay1;

FormofTransportation: plane;

NextStep: TravelStep2;

PreviousStep: Null;

)

i
i

i
i

i
i

i
i

4.2 Frames 83

 FirstStep

Trip1

 NextStep

 DestinationLodgingStay

 ArrivingTravelStep

 DepartingTravelStep

TravelStep1

 PreviousStep

 OriginLodgingStay

TravelStep2

LodgingStay1

Figure 4.3 The links between the frames constituting a trip between Chicago and Mel-
bourne.

(TravelStep2
MemberOf: TravelStep;
BeginDate: 6/27/2011;
EndDate: 6/28/2011;
Cost: $2000;
PaymentMethod: master card;
Origin: Melbourne;
Destination: Chicago;
OriginLodgingStay: LodgingStay1;
DestinationLodgingStay: Null;
FormofTransportation: plane;
NextStep: Null;
PreviousStep: TravelStep1;

)

(LodgingStay1
MemberOf: LodgingStay;
BeginDate: 6/23/2011;
EndDate: 6/27/2011;
Cost: $2500;
PaymentMethod: american express;
Place: Melbourne;
Lodging: Best Western;
ArrivingTravelStep: TravelStep1;
DepartingTravelStep: TravelStep2;

)

Figure 4.3 shows how the fillers in the frames link the frames into an organized plan for a
trip. The previous example concerning planning a trip is based on a more complex example
that appears in [Brachman and Levesque, 2004].

i
i

i
i

i
i

i
i

84 Chapter 4 Certain Knowledge Representation

4.3 Nonmonotonic Logic

Propositional logic and first-order logic arrive at certain conclusions and there is no mecha-
nism for withdrawing or overriding conclusions. This is the monotonicity property. How-
ever, often conclusions reached by humans are only tentative, based on partial information,
and they are retracted in the light of new evidence. For example, if we learn an entity is
a bird, we conclude that it can fly. When we later learn that the entity is an ostrich, we
withdraw the previous conclusion and deduce that the entity cannot fly. A logic that can
systemize this reasoning is called nonmonotonic. We discuss such logic next. The other
way to handle uncertain reasoning is to use probability theory, which is the focus of Part II
of this text.

4.3.1 Circumscription

Circumscription was developed by McCarthy [1980] to formalize the assumption that ev-
erything is as expected unless we state otherwise. He introduced the notion by discussing
the cannibal-missionary problem, which is as follows. Suppose there are three mission-
aries and three cannibals on one bank of a river, and they need to cross the river using a
two-passenger boat. However, the number of cannibals on each bank can never outnumber
the number of missionaries. McCarthy was not concerned with obtaining a solution to the
problem, but rather with the following observation. Namely, there are a lot of details that
are not stated. For example, does the boat have a leak that might make it sink, or, more
relevantly, is there a bridge over which some individuals could walk to cross the river. There
are many possible situations that could exist, but which are not stated, that could possibly
affect the solution to the problem. The circumscription assumption is that no condi-
tions change or are different than what is expected unless explicitly stated. In the current
example, we assume that the only way to cross the river is by the two-passenger boat, and
it will always make it reliably across.

Example 4.2 An example of a logical statement for circumscription is as follows:

∀x bird(x) ∧ ¬ abnormal(x)⇒flies(x).

The reasoner circumscribes the predicate abnormal, which means it is assumed to be false
unless otherwise stated. So if we only know bird(Tweety), we deduce Tweety flies. However,
suppose we include the following statement:

∀x ostrich(x)⇒abnormal(x).

If we know both ostrich(Ralph) and bird(Ralph), we could not conclude that Ralph flies.�

Example 4.3 Suppose we have the following statements:

∀x Quaker(x) ∧ ¬ abnormal1(x)⇒ pacifist(x)

∀x Republican(x)¬ abnormal2(x)⇒ ¬ pacifist(x)

Republican(Nixon) ∧ Quaker(Nixon).

Without knowing whether abnormal1(Nixon) or abnormal2(Nixon) is true, we would
conclude that he is a pacifist and that he is not a pacifist. In this case we could have the
reasoner draw no conclusion about pacifism, or we could employ prioritized circumscrip-
tion in which we give priority to being Quaker or to being a Republican. If we give the
priority to the latter, we conclude that Nixon is not a pacifist. �

A formal description of circumscription appears in [Lifschitz, 1994].

i
i

i
i

i
i

i
i

4.3 Nonmonotonic Logic 85

4.3.2 Default Logic

Default logic employs rules of the form “in the absence of information to the contrary,
assume....” Reiter [1980] provides a formalization of default logic and argues that default rea-
soning is of paramount importance to knowledge representation and reasoning. We provide
an informal introduction next.

Default logic derives conclusions if they are consistent with the current state of the
knowledge base. A typical rule in default logic is as follows:

bird(x): flies(x)

flies(x) .

This rule says that if bird(x) is true for a particular entity x, then we can conclude flies(x)
for that entity as long as there is nothing in the knowledge base that contradicts flies(x).
For example, if we learn bird(Tweety), then we can conclude flies(Tweety) as long as there is
nothing in the knowledge base stating flies(Tweety) is not true. However, if ¬flies(Tweety)
is in the knowledge base, then we cannot draw this conclusion.

The following is the general form of a default rule:

A: B1, B2, ..., Bn

C ,

where A, Bi, and C are formulas in first-order logic. A is called the prerequisite; B1, B2,
..., and Bn are called the consistent conditions; and C is called the consequent. If any
of the Bi can be proven false, then we cannot conclude C from A; otherwise we can.

A default theory is a pair (D,W), where D is a set of default rules and W is a set of
sentences in first-order logic.

Example 4.4 The following is a default theory. Let D be as follows:

bird(x): flies(x)

flies(x)

and

W = {bird(Tweety)}. �

An extension of a default theory is a maximal set of consequences of the theory. That
is, an extension consists of the statements in W and a set of conclusions that can be drawn
using the rules such that no additional conclusions can be drawn. The only extension of the
theory in Example 4.4 is as follows:

{bird(Tweety), flies(Tweety)}.

i
i

i
i

i
i

i
i

86 Chapter 4 Certain Knowledge Representation

Example 4.5 Let D be as follows:

Quaker(x): pacifist(x)

pacifist(x)

Republican(x): ¬pacifist(x)

¬pacifist(x)

and

W = {Quaker(Nixon), Republican(Nixon)}.

Then we have the following two extensions:

{Quaker(Nixon), Republican(Nixon), pacifist(Nixon)}

{Quaker(Nixon), Republican(Nixon), ¬pacifist(Nixon)}

As was the case for circumscription, prioritizing rules can give one of these extensions
preference over the other. �

4.3.3 Difficulties

A difficulty with nonmonotonic logic is revising a set of conclusions when knowledge changes.
For example, if we used sentence A to infer B, then removing A means we must remove
B (unless B can be concluded from other sentences) and also removing every conclusion
based on B. Truth maintenance systems ([Doyle, 1979]; [Goodwin, 1982]) were developed
to address this problem.

Another problem with nonmonotonic logic is that it is difficult to base a decision on
conclusions reached via this formalism. The conclusions are tentative and can be retracted
in light of new evidence. For example, suppose we conclude a patient has metastatic cancer.
What decision should we make that maximizes the benefit (utility) of the patient? We do
not really know the likelihood of cancer; rather it is just our default conclusion based on
current evidence. This problem is addressed using probability and maximum utility theory
in Example 9.15.

4.4 Discussion and Further Reading

Initially artificial intelligence researchers were more interested in problem representation
than knowledge representation [Amarel, 1968]. However, in the 1970s, researchers became
interested in developing expert systems, which are knowledge based. Expert systems were
introduced in Section 2.3.1, and in Section 2.4 we mentioned XCON [McDermott, 1982],
which is a well-known early expert system. Another successful early expert system was
DENDRAL [Feigenbaum et al., 1971], which analyzed spectrographic data obtained from a
substance, and then determined the substance’s molecular structure. It performed as well
as expert chemists.

Very-large-scale ontologies are being developed. Perhaps one of the most well-known
is Cyc [Lenat, 1998], which is an artificial intelligence project started in 1984 by Douglas
Lenat. The project’s goal was to assemble a comprehensive ontology of common sense
knowledge.

i
i

i
i

i
i

i
i

Exercises 87

OpenCyc is the open source version of the Cyc technology, the world’s largest
and most complete general knowledge base and common sense reasoning engine.
OpenCyc contains the full set of (non-proprietary) Cyc terms as well as millions
of assertions.

— http://www.cyc.com/cyc/opencyc/

The three methodologies for handling nonmonotonic inference, which are circumscrip-
tion [McCarthy and Hayes, 1969]; [McCarthy, 1980], default logic [Reiter, 1991], and modal
nonmonotonic logic [McDermott and Doyle, 1980], are further discussed and compared in
the article [Delgrande and Schaub, 2003].

EXERCISES

Section 4.1

Exercise 4.1 Develop a semantic set that represents some closed classification domain such
as the set of all automobiles, or the set of all professional sports teams.

Exercise 4.2 Provide an explanation for why humans can answer the question “is a canary
yellow?” more quickly than the question “can a canary fly?”

Section 4.2

Exercise 4.3 Example 4.1 showed two frames of the frames representing the semantic net
in Figure 4.1. Create the remaining frames.

Exercise 4.4 In Section 4.2.2 we developed a plan for a trip between Chicago and Mel-
bourne using frames. Again using frames, develop a plan for a trip that starts in Chicago,
visits Los Angeles, visits Melbourne, and then returns to Chicago.

Section 4.3

Exercise 4.5 Ordinarily, football players are big. However, place kickers are usually small.
Linemen are always big. Sam is both a place kicker and a lineman. Represent this situation
using both circumscription and default logic. Should we give priority to Sam being a place
kicker or a lineman?

Exercise 4.6 Consider the following piece of fictitious medical knowledge. Ordinarily, an
influenza virus results in a temperature. However, if a person is young, swine flu does not
result in a temperature. Joe is young and has swine flu. Try to represent this situation
using both circumscription and default logic.

http://www.cyc.com/cyc/opencyc/

i i

Chapter 5

Learning Deterministic Models

In the previous three chapter, we solved problems using models that represented determin-
istic relationships. We call them deterministic models. For example, in Section 2.3.1, we
introduced decision trees, and we showed how we could use a decision tree to determin-
istically ascertain the family of a plant from its properties. In those three chapters, we
constructed the models based on human knowledge that might be obtained from an expert
in the application area. In this chapter, we discuss learning deterministic models from data.

5.1 Supervised Learning

Artificial intelligence researchers have coined the type of learning discussed in this chapter
as “supervised learning.” Supervised learning involves learning a function from a training
set. The function maps a variable x (which may be a vector) to a variable y, and the training
set is a set of known values of (x, y) pairs. The variables in x are called the predictors,
and the variable y is called the target. For example, American Express might be interested
in learning the relationship between charges on an American Express card and the number
of miles traveled by the card holder. The training set consists of pairs (x, y), where x is the
number miles traveled by a given card holder in a given year and y is the amount of money

i
i

i
i

i
i

i
i

90 Chapter 5 Learning Deterministic Models

Table 5.1 Miles and Dollars for 25 American Express Card Holders

Passenger Miles (X) Dollars (Y)
1 1211 1802
2 1345 2405
3 1422 2005
4 1687 2511
5 1849 2332
6 2026 2305
7 2133 3016
8 2253 3385
9 2400 3090
10 2468 3694
11 2699 3371
12 2806 3998
13 3082 3555
14 3209 4692
15 3466 4244
16 3643 5298
17 3852 4801
18 4033 5147
19 4267 5738
20 4498 6420
21 4533 6059
22 4804 6426
23 5090 6321
24 5233 7026
25 5439 6964

charged that year by the card holder. As another example, we may wish to learn a way to
determine the family of a plant from a vector of properties of the plant. In this case, the
training set consists of pairs (x, y) where x is a vector of attributes of the given plant and y
is the known family of the plant. The function learned is called a model of the underlying
system generating that data.

In the first example above, the variable y is continuous, whereas in the second, it is
discrete. Next we discuss techniques for handling each of these situations.

5.2 Regression

Regression is a standard statistical technique for performing supervised learning when the
variables are usually, but not always, continuous. It was not developed by the artificial
intelligence community, but rather traces its roots to Francis Galton in the 19th century
[Bulmer, 2003]. Next, we briefly review linear regression, which is the simplest type of
regression. You should consult a statistics text such as [Freedman et al., 2007] for a thorough
coverage of regression.

i
i

i
i

i
i

i
i

5.2 Regression 91

Miles (X)

D
o

ll
a

rs
 (

Y
)

600050004000300020001000

7000

6000

5000

4000

3000

2000

Figure 5.1 Scatterplot of dollars verses miles for 25 American Express card holders.

5.2.1 Simple Linear Regression

In simple linear regression, we assume we have an independent random variable X and
a dependent random variable Y such that

y = β0 + β1x+ εx, (5.1)

where εx is a random variable, which depends on the value x of X, with the following
properties:

1. For every value x of X, εx is normally distributed with 0 mean

2. For every value x of X, εx has the same standard deviation σ

3. The random variables εx for all x are mutually independent

Note that these assumptions entail that the expected value of Y given a value x of X is
given by

E(Y |X = x) = β0 + β1x.

The idea is that the expected value of Y is a deterministic linear function of x. However,
the actual value y of Y is not uniquely determined by the value of X because of a random
error term εx.

Once we make these assumptions about two random variables, we use simple linear
regression to try to discover the linear relationship shown in Equality 5.1 from a random
sample of values of X and Y . To estimate the values of β0 and β1, we find the values of b0
and b1 that minimize the Mean Square Error (MSE), which is∑n

i=1[yi − (b0 + b1xi)]
2

n
,

where n is the size of the sample, and xi and yi are the values of X and Y for the ith item
in the sample. An example follows.

Example 5.1 American Express suspected that charges on American Express cards in-
creased with the number of miles traveled by the card holder. To investigate this matter, a
research firm randomly selected 25 card holders and obtained the data shown in Table 5.1.

i
i

i
i

i
i

i
i

92 Chapter 5 Learning Deterministic Models

Figure 5.1 shows a scatterplot of the data. We see that it appears that a linear relationship
holds between Dollars (Y) and Miles (X).

The values of b0 and b1 that minimize the MSE are our estimates of β0 and β1. We do not
review how to find the minimizing values here. Any statistics package such as MINITAB,
SAS, or SPSS has a linear regression module. If we use one such package to do a linear
regression analysis based on the data in Table 5.1, we obtain that

b0 = 274.8 b1 = 1.26.

So the linear relationship is estimated to be

y = b0 + b1x

= 274.8 + 1.26x. (5.2)

�

Other information provided by a statistics package, when used to do the linear regression
analysis in Example 5.1, includes the following:

Predictor Coefficient SE Coefficient T P
Constant b0 = 274.8 170.3 1.61 .12

x b1 = 1.255 .0497 25.25 0

Briefly, we discuss what each of these quantities means.

1. SE coefficient: This quantity, called the standard error of the coefficient, enables
us to compute our confidence in how close our approximations are to the true values
of β0 and β1 (assuming a linear relationship exists). Recall that for the normal density
function, 95% of the mass falls in an interval whose endpoints are the mean ± 1.96
times the standard deviation. So if σ0 is the SE coefficient for b0, we can be 95%
confident that

β0 ∈ (b0 − 1.96σ0, b0 + 1.96σ0).

In Example 5.1, we can be 95% confident that

β0 ∈ (274.8− 1.96× 170.3, 274.8 + 1.96× 170.3)

= (−58.988, 608.588)

β1 ∈ (1.255− 1.96× .0497, 1.255 + 1.96× .0497)

= (1.158, 1.352).

Note that we can be much more confident in the estimate of β1.

2. T : We have

T =
coefficient

SE coefficient
The larger the value of T , the more confident we can be that the estimate is close to
the true value. Notice in Example 5.1 that T is quite large for b1 and not very large
for b0.

3. P : If the true value of the parameter (b0 or b1) is 0, then this is the probability of
obtaining data more unlikely than the result. In Example 5.1, if b0 = 0, then the
probability of obtaining data more unlikely than the result is .12, while if b1 = 0, the
probability of obtaining data more unlikely than the result is 0. So we can be very
confident that b1 6= 0, while we cannot be so confident that b0 6= 0. This means that
the data strongly implies a linear dependence of Y on X, but it is not improbable that
the constant is 0.

i
i

i
i

i
i

i
i

5.2 Regression 93

Table 5.2 Data on Miles Traveled, Number of Deliveries, and Travel Time in Hours

Driver Miles (X1) Deliveries (X2) Travel Time (Y)
1 100 4 9.3
2 50 3 4.8
3 100 4 8.9
4 100 2 6.5
5 50 2 4.2
6 80 2 6.2
7 75 3 7.4
8 65 4 6.0
9 90 3 7.6
10 90 2 6.1

Note that even though regression involves using probability theory and random variables,
we still classify it as deterministic learning because the function learned (e.g., Function 5.2)
yields a unique value of y for each value of x rather than a probability distribution of y. So
the model learned is deterministic.

5.2.2 Multiple Linear Regression

Multiple linear regression is just like simple linear regression except that there is more
than one independent variable. That is, we have m independent variables X1, X2, . . . , Xm

and a dependent variable Y such that

y = b0 + b1x1 + b2x2 + . . .+ bmxm + εx1,x2,...,xm ,

where εx1,x2,...,xn
is as described at the beginning of Section 5.2.1.

Example 5.2 This example is taken from [Anderson et al., 2007]. Suppose a delivery com-
pany wants to investigate the dependence of drivers’ travel time on miles traveled and num-
ber of deliveries. Assume we have the data in Table 5.2. We obtain the following results
from a regression analysis based on these data:

b0 = −.869

b1 = .061

b2 = .923.

So the linear relationship is estimated to be

y = −0.8689 + 0.061x1 + 0.923x2 + εx1,x2 .

Furthermore, we have the following:

Predictor Coefficient SE Coefficient T P
Constant b0 = −.8687 .9515 −.91 .392

Miles (X1) b1 = .061135 .009888 6.18 0
Deliveries (X2) b2 = .9234 .2211 4.18 .004

�

i
i

i
i

i
i

i
i

94 Chapter 5 Learning Deterministic Models

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

x

y

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

x

y

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

x

y

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

x

y

(a) 9 data points (b) conect the dots

(c) linear regression (d) quadratic regression

Figure 5.2 Nine data points are shown in (a) and models based in those data points appear
in (c), (d), and (e).

5.2.3 Overfitting and Cross Validation

Our goal is to learn a model of the underlying system generating the data. Often we have
several different models based on different learning techniques, and we want to choose the
model that seems to fit the underlying system best. Overfitting occurs when a model
describes the data well, but as a result describes the underlying relationship among the
variables poorly. For example, suppose we have the 9 data points in Figure 5.2 (a). A
straightforward model is one that fits the data exactly by connecting the data points with
straight lines. We call the method that learns this model connect the dots. This model
appears in Figure 5.2 (b). The MSE of the data for this model is clearly 0. However, the
model may exhibit poor performance on unseen data. The linear regression model based
on the same data appears in Figure 5.2 (c). Figure 5.2 (d) shows the model learned using
quadratic regression. Quadratic regression is like linear regression except that we learn
a quadratic function with the following form:

y = b0 + b1x+ b2x
2.

In this example, the connect the dots model has 18 scalar parameters, the linear regres-
sion model has two scalar parameters, and the quadratic regression model has three scalar
parameters. In general, as we make a model more complex, we fit the data better, but
often fit the underlying system worse. In order to avoid overfitting, we need techniques to
evaluate the fit of the model to the underlying system. Next we discuss such techniques.

5.2.3.1 Test Set Method

In the test set method, we partition the data into a training set and a test set. For
example, we can choose 30% of the data at random to be the test set and the remaining

i
i

i
i

i
i

i
i

5.2 Regression 95

Table 5.3 MSE for Several Evaluation Methods and Several Model Learning Techniques

Method Connect the Dots Linear Regression Quadratic Regression
Test Set 2.20 2.40 0.90
LOOCV 3.32 2.12 0.96
3-FoldCV 2.93 2.05 1.11

70% to be the training set. We then learn a model from the training set and estimate the
performance on unseen data using the test set. Using a 30%–70% split and the data in
Figure 5.2 (a), the first row in Table 5.3 shows the MSE for the data items in the test set,
relative to the model learned from the training set, for connect the dots, linear regression,
and quadratic regression. Note that this result is based on one random draw, and a different
random draw could show a different result. Based on this result, we would choose quadratic
regression.

5.2.3.2 LOOCV Method

In Leave-One-Out Cross Validation (LOOCV), we remove one of the n data items and
train using the remaining n−1 data items. We then compute the error for the removed item
relative to the model learned. After this process is repeated for all n data items, the MSE
is computed. Using the LOOCV method and the data in Figure 5.2 (a), the second row in
Table 5.3 shows the MSE for connect the dots, linear regression, and quadratic regression.
Based on this result, we would again choose quadratic regression.

5.2.3.3 k-Fold Cross Validation

In k-Fold Cross Validation, we divide the data into k partitions of the same size. For
example, if k = 3 and there are 9 data items, then there are 3 data items in each partition.
For each partition j we train using the data items in the remaining k − 1 partitions, and
we compute the error for each data item in partition j relative to the model learned. After
this process is repeated for all k partitions, the MSE for all data items is computed. Using
3-FoldCV and the data in Figure 5.2 (a), the third row in Table 5.3 shows the MSE for
connect the dots, linear regression, and quadratic regression. Based on this result, we would
again choose the quadratic regression model. Note that Connect the Dots fared better than
Linear Regression using the Test Set Method, but performed substantially worse using the
other two methods. So based on all our results, linear regression would be chosen second.

5.2.3.4 Learning Hyperparameters

Some learning methodologies have hyperparameters, which are parameters whose values
must be set in the learning methodology before a model is learned from data. The method
for learning a linear regression model from data does not have hyperparameters. An example
of a method that does have hyperparameters is the Bayesian score, which is used in Section
11.2.1.4 to learn a Bayesian network DAG model from data. The hyperparameters in that
methodology are the parameters in the Dirichlet distribution used to calculate the Bayesian
score. As another example, in Section 15.2.3 we present learning a neural network from data.
That learning technique requires specification of the number of hidden layers and number of
hidden nodes per layer. When a learning methodology has hyperparameters, we want to first
determine the hyperparameter values that give the best results. A procedure often used is
as follows. The data is distributed into 70% training data and 30% test data. Using various
hyperparameter values, we do a 5-fold cross validation for each hyperparameter setting on

i
i

i
i

i
i

i
i

96 Chapter 5 Learning Deterministic Models

the training data. We then learn a model from the entire training data using the best
hyperparameter settings. Lastly, that model is applied to the test data for final evaluation.
Note that the choice of a 30%–70% and a 5-fold cross validation is just a heuristic. Other
common choices include using a 20%–80% split and/or a 10-fold cross validation.

5.2.3.5 Learning Our Final Model

Once a learning technique is chosen, we learn a model from all the data using the technique.
In the example just discussed, we would learn a model from all 9 data points using quadratic
regression.

5.3 Parameter Estimation

In Section 5.2.1 we said that, in the case of simple linear regression, to estimate the val-
ues of β0 and β1, we find the values of b0 and b1 that minimize the mean square error.
This is a particular case of a general principle. That is, when we develop a model that
predicts an outcome y = f(x) from a predictor x, we want the true value of y to be as
close as possible to the predicted value. Towards this aim, for the observed data, namely
(x1, y1), (x2, y2),, (xn, yn), we strive to make f(xi) and yi to be as close in value as pos-
sible. To make this explicit, we develop a loss function, Loss(y, ŷ), which in some sense
measures the difference in an observed value y of the outcome and the estimate ŷ obtained
from the model. In the case of linear regression, we set

Loss(y, ŷ) = (y − ŷ)2 = (y − (b0 + b1x))2

The sum of the loss function over the observed data is called the cost function. That is,

Cost([y1, ŷ1], [y2, ŷ2], ..., [yn, ŷn]) =

n∑
i=1

Loss(yi, ŷi).

In the case of simple linear regression, we have that

Cost([y1, ŷ1], [y2, ŷ2], ..., [yn, ŷn]) =
n∑
i=1

(yi − (b0 + b1xi))
2 (5.3)

Our goal is the find the values of the parameters in the model that minimize the cost
function.

5.3.1 Estimating the Parameters for Simple Linear Regression

Next we find the values of the parameters that minimize the cost function for simple linear
regression.

Theorem 5.1 The values of b0 and b1 that minimize the cost function in Equality 5.3 are
as follows:

b1 =

∑n
i=1 (xi − x̄) (yi − ȳ)∑n

i=1 (xi − x̄)
2

b0 = ȳ − bx̄.

i
i

i
i

i
i

i
i

5.3 Parameter Estimation 97

Proof. Taking the partial derivatives of the cost function in Equality 5.3 with respect to
b0 and b1, we have

∂
∑n
i=1(yi − (b0 + b1xi))

2

∂b0
= −2

n∑
i=1

(yi − (b0 + b1xi)) (5.4)

∂
∑n
i=1(yi − (b0 + b1xi))

2

∂b1
= −2

n∑
i=1

(yi − (b0 + b1xi))xi. (5.5)

Setting the partial derivatives in Equality 5.4 to 0, and then performing several steps in
which we rearrange terms we obtain the following:

n∑
i=1

(yi − (b0 + b1xi)) = 0

n∑
i=1

yi =
n∑
i=1

(b0 + b1xi)

nb0 =
n∑
i=1

(yi − b1xi)

b0 = ȳ − b1x̄.
Setting the partial derivatives in Equality 5.5 to 0, and then performing several steps in
which we rearrange terms we obtain the following:

n∑
i=1

(yi − (b0 + b1xi))xi = 0

n∑
i=1

yixi =
n∑
i=1

(b0 + b1xi)xi

b1

n∑
i=1

x2
i =

n∑
i=1

(yixi − b0xi)

b1

n∑
i=1

x2
i =

n∑
i=1

yixi − (ȳ − b1x̄)

n∑
i=1

xi

b1

(
n∑
i=1

x2
i − x̄

n∑
i=1

xi

)
=

n∑
i=1

yixi − ȳ
n∑
i=1

xi.

b1 =

∑n
i=1 xi(yi − ȳ)∑n
i=1 xi(xi − x̄)

=

∑n
i=1 xi(yi −

1
n

∑n
i=1 yi)∑n

i=1 xi(xi −
1
n

∑n
i=1 xi)

=

∑n
i=1 xiyi −

1
n

∑n
i=1 xi

∑n
i=1 yi∑n

i=1 x
2
i − 1

n (
∑n
i=1 xi)

2

=

∑n
i=1 xiyi −

1
n

∑n
i=1 xi

∑n
i=1 yi∑n

i=1 x
2
i − 1

n (
∑n
i=1 xi)

2

=

∑n
i=1 (xi − x̄) (yi − ȳ)∑n

i=1 (xi − x̄)
2 .

It is left as an exercise to obtain the last equality by working backwards.

i
i

i
i

i
i

i
i

98 Chapter 5 Learning Deterministic Models

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

x

y

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

x

y
z1

z2

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

x

y

z1

z2

z3

(a) (b) (c)

f(z)

zzz

f(z) f(z)

Figure 5.3 An illustration of the gradient descent algorithm.

5.3.2 Gradient Descent

In the case of simple linear regression we were able to analytically determine the exact values
of the parameters that minimize the cost function (Theorem 5.1). For many models, such as
the ones we will encounter when we study deep learning in Chapter 15, this is not possible.
In this case we can obtain the values using an optimization algorithm. One such algorithm is
gradient descent, which is used to find the value z that minimizes a function f(z) where z
may be a scalar or a vector, which is why it appears in boldface. We first illustrate gradient
descent with the simplest case, which is when z is a scalar. The assumption is that f(z)
is differentiable, has derivative equal to 0 at only one point, and f(z) is minimized at that
point. This situation is shown in the graph in Figure 5.3 (a). The gradient descent search
algorithm starts at an arbitrary point z1 and creates a sequence of points that converge to
the minimizing value using the following rule:

zj+1 = zj − λf ′(zj), (5.6)

where λ is the learning rate, and f ′(zj) is the first derivative of f(z) evaluated at zj . Figure
5.3 (b) shows the case where z1 is to the right of the minimizing value. In this case,
f ′(z1) > 0, and so when we subtract λf ′(z1) from z1 we move to the left, which moves us
closer to the minimizing value. If λ is sufficiently large, we will overshoot the minimizing
value as illustrated in Figure 5.3 (c). In this case f ′(z2) < 0 and so when we subtract
λf ′(z2) from z2 we move to the right, which moves us closer to the minimizing value. We
keep iterating using Rule 5.6 until some convergence criterion is met. Typical criteria include
stopping after a fixed number of steps, or stopping when |f ′(zj)| < ε, where ε is some small
value.

The learning rate λ > 0 is a small number that forces the algorithm to make small
jumps. Typical values for λ range from 0.0001 to 1, and the best value depends on the cost
function. When the MSE is the cost function the value of the first derivative increases as we
increase the size of the dataset. So, in this case, to keep the effective change in z sufficiently
small, we can set λ = 1/n, where n is the number of data items. Another strategy is to
change the value of λ in each iteration. When we are far from the minimizing value we
should move towards it faster, and so the value of λ should be relatively large. Similarly,
when we are close to the minimizing value, λ should be relatively small. Since we don’t know
how close we are to the minimizing value, we can’t check the closeness directly. However,
we can check the value of the cost function by using the estimated parameters of the model
at the end of each iteration. If the cost was reduced since the last iteration, we can increase
the learning rate by say 10%. If our cost was increased (which means we skipped over the
minimizing value) we can reset the parameters to their values in the previous iteration and
decrease the learning rate by say 50%. This technique is called bold driver.

Next we show a gradient descent algorithm for f(z) = z2. Of course we know the
minimizing value of z2 is z = 0. Our purpose is to illustrate gradient descent as simply as

i
i

i
i

i
i

i
i

5.3 Parameter Estimation 99

possible. In this case f ′(z) = 2z. So the gradient descent algorithm is as follows:

Algorithm 5.1 Gradient Descent z2

Output: Value of z that minimizes z2.

Function Minimizing V alue;
z = arbitrary value;
λ = learning rate;
repeat number iterations times

z = z − λ× 2z;
endrepeat
return z;

Consider again simple linear regression. Theorem 5.1 obtained an analytic solution to
the values of b0 and b1 that minimize the cost function in Equality 5.3. Next we show a
gradient descent algorithm that determines these minimizing values. Recall that the cost
function is

n∑
i=1

(yi − ŷi)2 =

n∑
i=1

(yi − (b0 + b1xi))
2, (5.7)

and the partial derivatives of the cost function are

∂
∑n
i=1(yi − (b0 + b1xi))

2

∂b0
= −2

n∑
i=1

(yi − (b0 + b1xi))

∂
∑n
i=1(yi − (b0 + b1xi))

2

∂b1
= −2

n∑
i=1

(yi − (b0 + b1xi))xi.

We need to find the values of b0 and b1 that minimize the cost function. So, z = (b0, b1) is a
vector, and we need to apply Rule 5.6 to both b0 and b1 using the partial derivatives. The
following algorithm does this:

Algorithm 5.2 Gradient Descent Simple Linear Regression

Input: Set of real data {{(x1, y1), (x2, y2), ..., (xn, yn)}.
Output: Values of b0 and b1 that minimize the cost function in Equality 5.7.

Function Minimizing V alues;
b0 = arbitrary value 0;
b1 = arbitrary value 1;
λ = learning rate;
repeat number iterations times

b0 gradient = −2
∑n
i=1(yi − (b0 + b1xi));

b1 gradient = −2
∑n
i=1(yi − (b0 + b1xi))xi;

b0 = b0 − λ× b0 gradient;
b1 = b1 − λ× b1 gradient;

endrepeat
return b0, b1;

Notice in this algorithm that the new values of b0 and b1 are both computed from the
previous two values. We do not update them in sequence.

i
i

i
i

i
i

i
i

100 Chapter 5 Learning Deterministic Models

5 10 15 20

-1000

-500

0

500

1000

z

f(z)

Figure 5.4 A function with more than one local minimum.

In general, when we have a function f(z1, z2, ..., zm) of more than one variable, we can
represent the variables as the vector z = (z1, z2, ..., zm). We then define the gradient ∇f(z)
as the follow vector:

∇f(z) =

(
∂f(z)

∂z1
,
∂f(z)

∂z2
, ...,

∂f(z)

∂zm

)
.

Rule 5.6 is then written as follows:

zj+1 = zj − λ∇f(zj).

A high level algorithm for gradient descent follows:

Choose initial values of argument variables z1, z2, ..., zm;
repeat number iterations times

z = z− λ∇f(z);
endrepeat
return z;

5.3.3 Logistic Regression and Gradient Descent

Logistic regression is much like linear regression except that it maps a linear combination
of the predictor variables to the probability of a binary outcome. For example, we might
map age, height, body mass index, and glucose level to the probability of a person having
diabetes. For simplicity we will discuss the case where there is one predictor, called simple
logistic regression. The sigmoid function is as follows:

f(z) =
exp(z)

1 + exp(z)
.

The range of the sigmoid function is the interval (0,1). It is used in logistic regression to
provide the probability of a binary outcome as follows:

P (Y = 1|x) =
exp(b0 + b1x)

1 + exp(b0 + b1x)

P (Y = −1|x) =
1

1 + exp(b0 + b1x)
.

i
i

i
i

i
i

i
i

5.3 Parameter Estimation 101

We can develop loss and cost functions for simple logistic regression in the following way.
It is left as an exercise to show that for both y = 1 and y = −1, we have that

P (Y = y|x) =
exp (y(b0 + b1x))

1 + exp(y(b0 + b1x))
.

If we want to find the values of b0 and b1 that make an observed value of y most likely
(maximum likelihood estimates), we want values that maximize P (Y = y|x). So, we want
to minimize 1/P (Y = y|x), which means our loss function is as follows:

Loss(y, b0 + b1x)) = ln

(
1

P (Y = y|x)

)
= ln

(
1 + exp (y(b0 + b1x))

exp(y (b0 + b1x))

)
.

If we have data (x1, y1), (x2, y2),, (xn, yn), our cost function is then

n∑
i=1

ln

(
1 + exp (yi(b0 + b1xi))

exp(yi (b0 + b1xi))

)
. (5.8)

There is no analytical solution for finding the minimizing value of this cost function. It is
left as an exercise to write a gradient descent algorithm that finds the minimizing values.

5.3.4 Stochastic Gradient Descent

The gradient descent algorithm assumes that there is a single minimum to the given function.
However, we could have a function like the one in Figure 5.4. In this case, if we set z1 to
a small value, the gradient search algorithm will find the local minimum on the left, while
the true minimum is the one on the right. In our applications using gradient descent to
minimize a cost function, stochastic gradient descent ameliorates this problem somewhat.

Stochastic gradient descent is a stochastic approximation of gradient descent for the
case when the objective function is the sum of differentiable functions. In the applications
discussed here, the cost function is the sum of the loss function over all data items. In
stochastic gradient descent, we update based on each data item in sequence rather than
based on all at one time. A high level algorithm for stochastic gradient descent, written in
terms of a loss function, follows:

Choose initial values of model parameters z1, z2, ..., zm;
repeat number iterations times

randomly shuffle data items;
for i = 1 to n // n is the number of data items.

z = z− λ∇Loss(yi, ŷi);
endfor

endrepeat
return z;

Recall that yi is the actual value of outcome y for the ith data item and ŷi is the value
predicted by the model when it has parameter values z. The data items are randomly shuffled
in each iteration to avoid falling into a cycle. Ordinary gradient descent tends to converge to
the minimizing parameter values of the basin in which the parameters are initialized. Since
in stochastic gradient descent we update based on each data item in sequence, the algorithm
can escape a local minimum and jump to another basin. Stochastic gradient descent has
been shown to be faster, and less prone to reach bad local minima than standard gradient
descent [Bottou, 1991].

i
i

i
i

i
i

i
i

102 Chapter 5 Learning Deterministic Models

Table 5.4 Data Concerning the Decision as to How to Spend a Saturday Afternoon

Day Outlook Temp Humidity Wind Activity
1 rain hot high strong stay home
2 overcast cool high strong stay home
3 overcast cool normal strong walk
4 rain cool normal strong stay home
5 sunny cool normal strong tennis
6 sunny cool normal weak tennis
7 rain hot normal strong stay home
8 sunny hot normal weak walk
9 sunny mild normal strong tennis
10 sunny mild high weak tennis
11 rain mild high strong stay home
12 overcast mild high strong walk
13 sunny mild high strong tennis
14 overcast hot high strong stay home

5.4 Learning a Decision Tree

A decision tree provides a function from the predictors to the target when all variables are
discrete. We saw a decision tree in Figure 2.2 in Section 2.3.1. That decision tree predicted
the family of a plant from attributes of the plant. In Section 2.3.1 we discussed how the
decision tree could be constructed from rules identified by an expert. Another way to obtain
a decision tree is to learn it from data. Next we present the ID3 algorithm [Quinlan, 1986]
for doing this.

Suppose on each Saturday afternoon we either stay home, go for a walk, or play tennis.
There are a several variables that could affect our decision, including the weather outlook,
the temperature, the humidity, and the wind. Suppose further that we are pretty happy
with our decisions on the past 14 Saturdays. However, we went to a lot of trouble to reach
those decisions, and so we want to learn a decision tree from the data concerning those
Saturdays. That data appears in Table 5.4.

Our goal is to learn a decision tree from these data that classifies all of these 14 instances
correctly. Figures 5.5 and 5.6 show two such decision trees. The decision tree in Figure 5.6
is smaller than the one in Figure 5.5, and does not even contain the attribute wind. This
result indicates that this variable is extraneous to the correct classification of those instances.
In general, we do not want to include extraneous attributes in our decision tree; we want
the tree to be as parsimonious as possible. This is an example of the Occam’s Razor
Principle, which in this contest says that we should always look for the simplest model
that fits the data. The ID3 algorithm, which we describe shortly, searches for the simplest
decision tree.

5.4.1 Information Theory

Before presenting the algorithm, we need to review first information theory and then infor-
mation gain.

Suppose we have a fair coin. Then if we denote the event that the coin lands heads by H,
P (H) = 1/2. Suppose further that Joe tosses the coin and views the result, and Mary does
not view it; then Joe knows the outcome of the toss, while Mary does not. If Joe informs
Mary as to that outcome, how much information is he providing? If we let 0 represent H

i
i

i
i

i
i

i
i

5.4 Learning a Decision Tree 103

Temp?

Humidity?

cool mild

Wind?

hot

Humidity?

Wind? stay home walk Wind? tennisstay home

high normal strong

Outlook? tennis

strong weak

weak high normal

walk tennisstay home

rain overcast sunny

Outlook? tennis

strong weak

walk tennisstay home

rain overcast sunny

Figure 5.5 A decision tree that classifies the instances in Table 5.4 correctly.

Outlook?

Temp?

overcast sunny

stay home

rain

Temp?

Humidity? stay home tennis tennis walkwalk

mild cool hot

walk stay home

normal high

mild cool hot

Figure 5.6 A parsimonious decision tree that classifies the instances in Table 5.4 correctly.

i
i

i
i

i
i

i
i

104 Chapter 5 Learning Deterministic Models

H T

0 1

(a)

H T

0 1

(b)

P(H) = 1/2 P(T) = 1/2 P(H) = 3/4 P(T) = 1/4

Figure 5.7 Binary trees representing binary codes.

and 1 represent T, then Joe can tell Mary 0 if the outcome is H and 1 if it is T. Regardless,
Joe can encode the outcome in 1 bit. So we say that Joe is providing Mary with one bit of
information. Suppose next that the coin is weighted such that P (H) = 1. Then even if Mary
does not view the outcome of the toss, she knows that it is H. Therefore, if Joe informs her
as to the outcome, Joe is providing zero bits of information. Finally suppose P (H) = 3/4.
This probability is between 1/2 and 1; therefore it seems the report of an outcome of a toss
should provide information in between the two extremes of 1/2 and 1. However, Joe still
needs to provide Mary with one bit of information to let her know for certain the outcome
of the toss. So if we do the experiment just once, Joe must supply one bit of information
unless we have the extreme probability of 1 or 0. Binary trees representing the binary code
we identified for the probabilities of 1/2 and 3/4 appear in Figure 5.7.

Suppose next that we toss the fair coin twice, and Joe informs Mary as to the outcome
of the tosses. If he reports 00 for HH, 01 for HT, 10 for TH, and 11 for TT, then the binary
tree in Figure 5.8 (a) represents this binary code. Clearly, Joe is now always supplying
Mary with two bits of information. If we toss the coin that has P (H) = 3/4 twice, we could
use the binary code in Figure 5.8 (a). However, on average, it is more efficient to use the
code in Figure 5.8 (b). Using this code, the expected value of the number of bits needed to
provide the result of the two tosses is equal to

1× 9

16
+ 2× 3

16
+ 3× 3

16
+ 3× 1

16
= 1.6875. (5.9)

If we use the code in Figure 5.8 (a), two bits are always required, which means the expected
value of the number of bits needed to provide the result of the two tosses is equal to 2.

The binary codes in Figure 5.8 are prefix codes. In a prefix code, no code word for one
character constitutes the beginning of the code word for another character. For example, if
10 is the code word for HT, then 101 cannot be the code word for TH. An optimal binary
prefix code for a probability distribution is a binary prefix code that yields the minimal
expected value of the number of bits needed to report the outcome of the experiment. The
binary code in Figure 5.8 (a) is an optimal binary prefix code if p(H) = 1/2, and the one
in Figure 5.8 (b) is an optimal code if P (H) = 3/4. Huffman’s algorithm, which appears
in a standard algorithms text such as [Neapolitan, 2015], produces an optimal binary prefix
code.

Suppose now that we repeat the experiment of tossing the coin n times. If we use an
optimal binary prefix code to report the outcome of the n tosses, Shannon [1948] showed
that the limit as n → ∞ of the expected value of the number of bits needed to report the

i
i

i
i

i
i

i
i

5.4 Learning a Decision Tree 105

P(HH) = 1/4

0 1

(a)

HH HT

0 1

TH TT

0 1

P(HT) = 1/4 P(TH) = 1/4 P(TT) = 1/4

HH

0 1

HT

0 1

TH TT

0 1

P(HH) = 9/16

P(HT) = 3/16

P(TH) = 3/16 P(TT) = 1/16

(b)

Figure 5.8 Binary trees corresponding to two optimal prefix codes.

outcome of each toss is equal to

− (p1 log2 p1 + p2 log2 p2)

where p1 = P (H) and p2 = P (T). This value is called the entropy H associated with the
given random variable.

If p1 = p2 = 1/2, then

H = −
(

1

2
log2

1

2
+

1

2
log2

1

2

)
= 1.

This result is expected because we know it always takes one bit to report the outcome of
each toss, regardless of how many tosses we perform.

If p1 = 3/4 and p2 = 1/4, then

H = −
(

3

4
log2

3

4
+

1

4
log2

1

4

)
= .81128.

Equality 5.9 shows that if n = 2, then the expected number of bits needed to report both
outcomes is 1.6875, which means the expected value of the number of bits needed to report
each outcome is 1.6875/2 = .843 75. This value is much closer to H than 1 (the number of
bits needed when n = 1). When n = 3, the expected value will be even closer to H, and in
the limit it equals H.

If there are m outcomes to the experiment and pi is the probability of the ith outcome,
then the entropy associated with the given random variable is

−
m∑
i=1

pi log2 pi.

i
i

i
i

i
i

i
i

106 Chapter 5 Learning Deterministic Models

The entropy is maximized when all pi are equal to 1/m. In this case we are providing the
most information when we report the outcome of the experiment. The entropy is minimized
(equal to 0) when pi = 1 for some i. In this case we are providing no information.

5.4.2 Information Gain and the ID3 Algorithm

Consider the probability distribution of Outlook in Table 5.4. Recall that our goal is to
determine the value of Activity. There are 6 days on which the value of Activity is to
stay home, 3 days on which it is to walk, and 5 days on which it is to play tennis. The
entropy associated with the probability distribution of Activity (as determined by the data)
is therefore as follows:

H(Activity) = −
(

6

14
log2

6

14
+

3

14
log2

3

14
+

5

14
log2

5

14

)
= 1.531.

Our goal is to get this entropy down to 0 as quickly as possible so we know the value of
Activity. Notice that if we found out that the value of Outlook was rain we would know that
the value of Activity was to stay home because we stayed home on every one of the 4 days
it rained, and we would have achieved our goal. On the other hand, if we found out that
the value of Outlook was sunny, the probability that the value of Activity is tennis would
be 5/6 because we played tennis on 5 of the 6 days it was sunny, and we would be close to
an entropy of 0. So it looks like we can possibly gain a lot of information by learning the
value of Outlook. To formalize this notion, we compute the expected value of the entropy of
Activity conditional on Outlook, which we denote as EHOutlook(Activity). To obtain this
value, we first compute

Hrain(Activity) = −
(

4

4
log2

4

4
+

0

4
log2

0

4
+

0

4
log2

0

4

)
= 0

Hsunny(Activity) = −
(

5

6
log2

5

6
+

1

6
log2

1

6
+

0

6
log2

0

6

)
= .650

Hovercast(Activity) = −
(

2

4
log2

2

4
+

2

4
log2

2

4
+

0

4
log2

0

4

)
= 1.

By Hrain(Activity) we mean the entropy of Activity given that it rains. We then have that

EHOutlook(Activity) = Hrain(Activity)P (rain) +

Hsunny(Activity)P (sunny) +

Hovercast(Activity)P (overcast)

= Hrain(Activity)
4

14
+

Hsunny(Activity)
6

14
+

Hovercast(Activity)
4

14

= 0× 4

14
+ .650× 6

14
+ 1× 4

14
= .564.

So we can expect to reduce the entropy of Activity from 1.531 to .564 if we learn the value
of Outlook. We define this difference to be the information gain associated with Outlook.

i
i

i
i

i
i

i
i

5.4 Learning a Decision Tree 107

That is,

GainOutlook(Activity) = H(Activity)− EHOutlook(Activity)

= 1.531− .564 = .967.

It is left as an exercise to compute the gain associated with the other three variables,
and show that Outlook has the largest gain. The ID3 Algorithm therefore makes Outlook
the top node in our decision tree. For each value of Outlook, we then compute the gain
associated with each of the other three variables. To that end,

EHovercast,Temp(Activity) = Hovercast,cool(Activity)P (cool|overcast) +

Hovercast,mild(Activity)P (mild|overcast) +

Hovercast,hot(Activity)P (hot|overcast)

= 1× 1

2
+ 0× 1

4
+ 0× 1

4
=

1

2
.

So

Gainovercast,Temp(Activity) = Hovercast(Activity)− EHovercast,Temp(Activity)

= 1− 1

2
=

1

2
.

It is left an exercise to compute the gain associated with the other two variables, and
show that Temp has the largest gain. So the ID3 Algorithm makes Temp the node touching
the edge emanating from Outlook that is labeled overcast. When the value of Outlook
is rain, the value of Activity is always to stay home. So we make “stay home” the node
touching the edge emanating from Outlook that is labeled rain; this node is a leaf. It is left
as an exercise to determine the remaining nodes in the tree.

We illustrated the ID3 algorithm; it now follows.

Algorithm 5.3 ID3

Input: A data file whose records contain values of predictors and a
target variable.
Output: A decision tree.

Function Addnode(datafile, set of predictors);
if every record in datafile has the same value V of target

then return a node labeled with V ;
elseif set of predictors is empty

then return a node labeled with disjunction of values of target in datafile;
else

choose predictor in set of predictors with largest gain;
create a node node labeled with predictor;
set of predictors = set of predictors− {predictor};
for each value V of predictor

datafile = data file consisting only of records where predictor has value V ;
newnode = Addnode(datafile, set of predictors);
create an edge from node to newnode labeled with V ;

endfor
return node;

endelse

i
i

i
i

i
i

i
i

108 Chapter 5 Learning Deterministic Models

Table 5.5 Performance of the ID3 Algorithm in a Chess Domain

Training Set Size Fraction of Entire Universe Errors in 10,000 trials
200 .0001 199
1000 .0007 33
5000 .0036 8

25, 000 .0179 6
125, 000 .0893 2

The global call to function Addnode is as follows:

root of tree = Addnode(datafile, set of predictors);

where datafile contains all the records and set of predictors contains all the predictors.
Although the ID3 Algorithm produces a parsimonious decision tree, the question remains

as the whether the resultant tree performs well at classifying new instances. Quinlan [1983]
evaluated the performance of ID3 on the problem of learning to classify boards in a chess-
related game. The game involved white versus black, where white played with a king and
a rook, and black played with a king and a knight. The goal was to learn to recognize
boards that would lead to a loss for black within three moves. The predictors consisted of
23 properties of the board such as “there is an inability to move the king safely.” There
were 1,400,000 possible boards, of which 474,000 led to a loss for black within three moves.
Results of the evaluation appear Table 5.5.

5.4.3 Overfitting

As discussed in Section 5.2.3, overfitting can occur when we learn a model from data. In
the case of learning a decision tree, we can address overfitting by pruning the tree after
learning it. Quinlan [1987] introduced several methods for pruning decision trees including
Reduced Error Pruning, which we discuss next.

When we prune a node from a decision tree, we replace the node by the most common-
occurring value of the target at that node. For example, suppose we are pruning the node
on the branch labeled sunny that is a child of Outlook in the tree in Figure 5.6. Suppose
further that we are pruning using the data file in Table 5.4. Of the 6 records that have
Outlook equal to sunny, 5 have Activity equal to tennis. Therefore if we pruned the node
labeled Temp that touches the edge labeled sunny, we would replace node Temp by a node
labeled tennis.

In reduced error pruning, the dataset is partitioned into a training set and a test set. We
learn a decision tree from the training set using an algorithm such as ID3, and then prune
the tree using the test set. This is done by first determining the predictive accuracy of the
tree for the test set. Next we individually prune each node in the tree, and determine the
predictive accuracy with the node removed. We prune the node that increases the predictive
accuracy the most. This procedure is followed until no node improves the accuracy. The
algorithm follows.

Algorithm 5.4 Reduced Error Pruning
Input: A decision tree and a test data set.
Output: A pruned decision tree.

i
i

i
i

i
i

i
i

Exercises 109

Procedure Prune(var decision tree, test data);
repeat

for each node in decision tree
determine how much pruning the node improves predictive
accuracy on test data;
if pruning some node improves predictive accuracy

prune the node that increases predictive accuracy the most;
endfor

until pruning no node improves predictive accuracy;

EXERCISES

Section 5.2

Exercise 5.1 Suppose we have the following data on 10 college students concerning their
grade point averages (GPA) and scores on the graduate record exam (GRE):

Student GPA GRE
1 2.2 1400
2 2.4 1300
3 2.8 1550
4 3.1 1600
5 3.3 1400
6 3.3 1700
7 3.4 1650
8 3.7 1800
9 3.9 1700
10 4.0 1800

Using some statistical package such as MINITAB, do a linear regression for GRE in terms
of GPA. Show the values of b0 and b1 and the values of the SE coefficient, T , and P for each
of them. Show R2. Do these results indicate a linear relationship between GRE and GPA?
Does it seem that the constant term is significant?

Exercise 5.2 Suppose we have the same data as in Exercise 5.1, except we also have data
on family income as follows:

Student GPA GRE Income ($1000)
1 2.2 1400 44
2 2.4 1300 40
3 2.8 1550 46
4 3.1 1600 50
5 3.3 1400 40
6 3.3 1700 54
7 3.4 1650 52
8 3.7 1800 56
9 3.9 1700 50
10 4.0 1800 56

i
i

i
i

i
i

i
i

110 Chapter 5 Learning Deterministic Models

Using some statistical package such as MINITAB, do a linear regression for GRE in terms
of GPA and income. Show the values of b0, b1, and b2, and the values of the SE coefficient,
T , and P for each of them. Show R2. Does it seem that we have improved our predictive
accuracy for the GRE by also considering income?

Exercise 5.3 Suppose we have the same data as in Exercise 5.1, except that we also have
data on the students’ American College Test (ACT) scores as follows:

Student GPA GRE ACT
1 2.2 1400 22
2 2.4 1300 23
3 2.8 1550 25
4 3.1 1600 26
5 3.3 1400 27
6 3.3 1700 27
7 3.4 1650 28
8 3.7 1800 29
9 3.9 1700 30
10 4.0 1800 31

Using some statistical package such as MINITAB, do a linear regression for GRE in terms
of GPA and ACT. Show the values of b0, b1, and b2 and the values of the SE coefficient,
T , and P for each of them. Show R2. Does it seem that we have improved our predictive
accuracy for GRE by also considering ACT score? If not, what do you think would be an
explanation for this?

Exercise 5.4 Using the data in Exercise 5.3 and some statistical package such as MINITAB,
do a linear regression for GPA in terms of ACT. Show the values of b0 and b1, and the values
of the SE coefficient, T , and P for each of them. Show R2. Relate this result to that obtained
in Exercise 5.3.

Exercise 5.5 Consider again the data in Exercise 5.1. Investigate models learned from
those data using connect the dots, linear regression, and quadratic regression. Evaluate the
fit of each model using the test set method, LOOCV, and 3-fold cross validation. Which
model seems to fit the underlying system best?

Exercise 5.6 Suppose we have the data in Table 5.1. Investigate models learned from that
data using connect the dots, linear regression, and quadratic regression. Evaluate the fit of
each model using the test set method, LOOCV, and 3-fold cross validation. Which model
seems to fit the underlying system best?

Section 5.3

Exercise 5.7 It was left as an exercise to obtain the last equality in Theorem 5.1. Do this.

Exercise 5.8 Implement Algorithm 5.1 in the language of your choice. Try to optimize the
learning rate λ.

Exercise 5.9 Implement Algorithm 5.2 in the language of your choice. Try to optimize the
learning rate λ.

i
i

i
i

i
i

i
i

Exercises 111

Table 5.6 Test Data Concerning the Decision as to How to Spend a Saturday Afternoon

Day Outlook Temp Humidity Wind Activity
1 rain hot high strong stay home
2 overcast hot high weak tennis
3 overcast cool high strong tennis
4 rain cool normal weak stay home
5 sunny cool high strong tennis
6 sunny cool normal weak tennis
7 rain hot normal strong stay home
8 sunny hot normal strong walk
9 sunny hot normal strong tennis
10 sunny mild high weak tennis
11 rain mild normal strong stay home
12 overcast mild high weak walk
13 sunny mild high strong tennis
14 overcast hot high strong stay home

Exercise 5.10 Write an algorithm that determines the parameters for logistic regression
from data, using the cost function in Expression 5.8.

Exercise 5.11 Implement the algorithm you wrote in Exercise 5.10 in the language of your
choice. Try to optimize the learning rate λ.

Exercise 5.12 Write an algorithm that applies stochastic gradient descent to determining
the parameters for simple regression from data using the cost function in Expression 5.7.

Exercise 5.13 Implement the algorithm you wrote in Exercise 5.12 in the language of your
choice. Try to optimize the learning rate λ.

Section 5.4

Exercise 5.14 Suppose we have a variable with two states x1 and x2, and P (x1) = .3.
Compute the entropy associated with the random variable.

Exercise 5.15 Suppose we have a variable with three states x1, x2, and x3, and P (x1) = .3,
P (x2) = .5. Compute the entropy associated with the random variable.

Exercise 5.16 In Section 5.4.2 it was left as an exercise to compute the gain associated
with the variables Temp, Humidity, and Wind based on the data in Table 5.4. Do this.

Exercise 5.17 In Section 5.4.2 it was left as an exercise to compute the gain associated
with the variables Humidity and Wind given that the Outlook is overcast based on the
data in Table 5.4. Do this.

Exercise 5.18 Suppose we have the test data in Table 5.6. Using Algorithm 5.4 and these
test data, prune the decision trees in Figures 5.5 and 5.6.

i i

Part II

Probabilistic Intelligence

i i

Chapter 6

Probability

As discussed in Chapter 2, it is reasonable to model a good deal of human reasoning under
certainty using logic. This model led to the development of rule-based systems that use the
inference engines forward chaining and backward chaining. For example, it is reasonable to
postulate that Mary the botanist has the following rule or item of knowledge stored in her
personal data bank of knowledge:

IF stem is woody
THEN type is tree.

Furthermore, if Mary were determining the family of a particular plant, it is plausible that
she would reason in a way similar to the decision tree in Figure 2.2, which is the equivalent
of backward chaining. That is, she would first ask questions that determined the type, then
ones that determined the class, and finally ones that determined the family.

To handle uncertain reference, researchers tried staying in the logical framework by
developing nonmonotonic logics. As discussed in Section 4.3.3, there are a number of dif-
ficulties with this approach. Another avenue explored by researchers was to remain in
the rule-based or logical framework when modeling uncertain inference, but to augment
the rules with numeric certainty factors [Buchanan and Shortliffe, 1984] or likelihood ratios
[Duda et al., 1976]. For example, the MYCIN system [Buchanan and Shortliffe, 1984] was
designed to diagnose bacterial infection while reasoning under uncertainty. A typical rule
in MYCIN is as follows:

i
i

i
i

i
i

i
i

116 Chapter 6 Probability

IF the organism grows in clumps
AND the organism grows in chains
AND the organism grows in pairs
THEN the organism is streptococcus with certainty .7

The certainty factor (in this case .7) is a number between −1 and 1. Certainty factors
greater than 0 increase our belief in the conclusion, and ones less than 0 decrease our belief.
So if we find that the organism grows in clumps, chains, and pairs, we become .7 certain that
it is streptococcus. Suppose now that a second rule makes us .6 certain that the organism
is streptococcus. We need to find the combined certainty due to these two rules. Two
certainty factors are combined using the following formula:

C12 =

C1 + C2(1− |C1|) C1 and C2 both positive or both negative

C1 + C2

1−min(|C1| , |C2|)
one of C1 and C2 positive, the other negative

So when C1 = .7 and C2 = .6, we have that

C12 = C1 + C2(1− |C1|) = .7 + .6(1− |.7|) = .88.

If the second rule disconfirms streptococcus with C2 = −.6 , we have that

C12 =
C1 + C2

1−min(C1, C2)
=

.7 + (−.6)

1−min(|.7| , |−.6|)
= .25.

The scheme works okay when each rule by itself describes a relationship between the
antecedent and the conclusion. However, consider the following now-classical example in-
troduced in [Pearl, 1986]. Suppose that in the past few years, Mr. Holmes has noticed
that frequently earthquakes have caused his burglar alarm to sound. The burglar alarm
concerns his home but it is wired to sound in his office, which is some distance from his
home. Presently, he is sitting in his office, and the burglar alarm sounds. He then rushes
home, assuming that there is a good chance that his residence has been burglarized. On the
way home, he hears on the radio that there has been an earthquake. He then reasons that
the earthquake may well have triggered the alarm, and therefore it is much less likely that
he has been burglarized. Psychologists call this type of reasoning discounting.

Let’s try to model this situation using rules. Denote the following propositions:

A: Mr. Holmes’ burglar alarm sounds.

B: Mr. Holmes’ residence is burglarized.

E: There is an earthquake.

Using the rule-based approach, we might assign the following certainty factors:

IF A
THEN B with certainty .8

IF E
THEN B with certainty −.4

When Mr. Holmes learns that his alarm has sounded, he becomes .8 certain that he has
been burglarized. When he later learns of the earthquake, he combines the certainty factor
.8 with the certainty factor −.4 as follows:

.8 + (−.4)

1−min(|.8| , |−.4|)
= .67.

i
i

i
i

i
i

i
i

6.1 Probability Basics 117

So his certainty in having been burglarized is reduce to .67.
A difficulty with this model is that E only decreases the certainty in B when we already

know A. That is, if the alarm had not sounded, Mr. Holmes would not conclude that it is
extremely unlikely that he has been burglarized today (i.e., more unlikely than on any other
day) after he heard there was an earthquake. So we cannot have the rule above concerning
earthquakes. Instead, we need rules with multiple premises in the antecedent as follows:

IF A ∧ E
THEN B with certainty .67

IF A ∧ ¬E
THEN B with certainty .85

Note that when we know A and ¬E, the certainty is higher than when we know only A
because we know for sure the other cause is not present. If we wanted to represent additional
causes such as an individual being seen lurking around the house, we would need to consider
more combinations of assertions in the antecedent.

Another problem with this rule-based approach is that it only allows us to do inference
in one direction. That is, if we wanted to model how Mr. Holmes would reason if he learned
that he had been burglarized, we would need the following additional rule:

IF B
THEN A with certainty .7

There is no clear connection between the certainty factor in this rule and the rules that
do inference in the other direction.

In addition to being cumbersome and complex, this rule-based representation of uncer-
tain knowledge and reasoning does not seem to model how humans reason very well. That
is, it seems unreasonable to postulate that a human mind has millions of rules, each repre-
senting a possibly complex uncertain relationship. Neapolitan [1989] discusses this matter
in more detail. Pearl [1986] made the more reasonable conjecture that humans identify local
probabilistic causal relationships between individual propositions, and that the change in the
certainty of one proposition changes our certainty in a related one, which in turn changes our
certainty in propositions related to that one. If Mr. Holmes’ knowledge is structured with
causal edges between propositions, we can represent his knowledge with a causal network,
and we can model his reasoning by traversing links in this network. Regardless of how well
this model represents human reasoning, it helped give rise to the field we now call Bayesian
networks, which has arguably become the most important architecture for reasoning with
uncertainty in artificial intelligence. We discuss the causal network representation of Mr.
Holmes’ reasoning and introduce Bayesian networks in the next chapter. In this chapter we
review probability. Bayesian networks are based on probability theory.

6.1 Probability Basics

After defining probability spaces, we discuss conditional probability, independence and con-
ditional independence, and Bayes’ theorem.

6.1.1 Probability Spaces

You may recall using probability in situations such as drawing the top card from a deck
of playing cards, tossing a coin, or drawing a ball from an urn. We call the process of
drawing the top card or tossing a coin an experiment. Probability theory has to do with

i
i

i
i

i
i

i
i

118 Chapter 6 Probability

experiments that have a set of distinct outcomes. The set of all outcomes is called the
sample space or population. Mathematicians ordinarily say sample space, while social
scientists ordinarily say population. We will say sample space. In this simple review, we
assume that the sample space is finite. Any subset of a sample space is called an event. A
subset containing exactly one element is called an elementary event.

Example 6.1 Suppose we have the experiment of drawing the top card from an ordinary
deck of cards. Then the set

E = {jack of hearts, jack of clubs, jack of spades, jack of diamonds}

is an event, and the set
F = {jack of hearts}

is an elementary event. �

The meaning of an event is that one of the elements of the subset is the outcome of the
experiment. In the preceding example, the meaning of the event E is that the card drawn
is one of the four jacks, and the meaning of the elementary event F is that the card is the
jack of hearts.

We articulate our certainty that an event contains the outcome of the experiment with
a real number between 0 and 1. This number is called the probability of the event. When
the sample space is finite, a probability of 0 means we are certain the event does not contain
the outcome, whereas a probability of 1 means we are certain it does. Values in between
represent varying degrees of belief. The following definition formally defines probability for
a finite sample space.

Definition 6.1 Suppose we have a sample space Ω containing n distinct elements; that is,

Ω = {e1, e2, . . . , en}.

A function that assigns a real number P (E) to each event E ⊆ Ω is called a probability
function on the set of subsets of Ω if it satisfies the following conditions:

1. 0 ≤ P (ei) ≤ 1 for 1 ≤ i ≤ n

2. P (e1) + P (e2) + . . .+ P (en) = 1

3. For each event that is not an elementary event, P (E) is the sum of the probabilities
of the elementary events whose outcomes are in E. For example, if

E = {e3, e6, e8},

then
P (E) = P (e3) + P (e6) + P (e8)

The pair (Ω, P) is called a probability space.�

Because probability is defined as a function whose domain is a set of sets, we should write
P ({ei}) instead of P (ei) when denoting the probability of an elementary event. However,
for the sake of simplicity, we do not do this. In the same way, we write P (e3, e6, e8) instead
of P ({e3, e6, e8}).

The most straightforward way to assign probabilities is to use the Principle of Indif-
ference, which says that outcomes are to be considered equiprobable if we have no reason
to expect one over the other. According to this principle, when there are n elementary
events, each has probability equal to 1/n.

i
i

i
i

i
i

i
i

6.1 Probability Basics 119

Example 6.2 Let the experiment be tossing a coin. Then the sample space is

Ω = {heads, tails},

and, according to the Principle of Indifference, we assign

P (heads) = P (tails) = .5.

�

We stress that there is nothing in the definition of a probability space that says we must
assign the value of .5 to the probabilities of heads and tails. We could assign P (heads) = .7
and P (tails) = .3. However, if we have no reason to expect one outcome over the other, we
give them the same probability.

Example 6.3 Let the experiment be drawing the top card from a deck of 52 cards. Then Ω
contains the faces of the 52 cards, and, according to the Principle of Indifference, we assign
P (e) = 1/52 for each e ∈ Ω. For example,

P (jack of hearts) =
1

52
.

The event

E = {jack of hearts, jack of clubs, jack of spades, jack of diamonds}

means that the card drawn is a jack. Its probability is

P (E) = P (jack of hearts) + P (jack of clubs) +

P (jack of spades) + P (jack of diamonds)

=
1

52
+

1

52
+

1

52
+

1

52
=

1

13
.

�

We have Theorem 6.1 concerning probability spaces. Its proof is left as an exercise.

Theorem 6.1 Let (Ω, P) be a probability space. Then

1. P (Ω) = 1.

2. 0 ≤ P (E) ≤ 1 for every E ⊆ Ω.

3. For every two subsets E and F of Ω such that E ∩ F = ∅,

P (E ∪ F) = P (E) + P (F),

where ∅ denotes the empty set.

Example 6.4 Suppose we draw the top card from a deck of cards. Denote by Queen the
set containing the four queens and by King the set containing the four kings. Then

P (Queen ∪ King) = P (Queen) + P (King) =
1

13
+

1

13
=

2

13

i
i

i
i

i
i

i
i

120 Chapter 6 Probability

because Queen ∩ King = ∅. Next, denote by Spade the set containing the 13 spades. The
sets Queen and Spade are not disjoint, so their probabilities are not additive. However, it is
not hard to prove that, in general,

P (E ∪ F) = P (E) + P (F)− P (E ∩ F).

So

P (Queen ∪ Spade) = P (Queen) + P (Spade)− P (Queen ∩ Spade)

=
1

13
+

1

4
− 1

52
=

4

13
.

�

6.1.2 Conditional Probability and Independence

We start with a definition.

Definition 6.2 Let E and F be events such that P (F) 6= 0. Then the conditional proba-
bility of E given F, denoted P (E|F), is given by

P (E|F) =
P (E ∩ F)

P (F)
.�

We can gain intuition for this definition by considering probabilities that are assigned
using the Principle of Indifference. In this case, P (E|F), as defined previously, is the ratio
of the number of items in E ∩ F to the number of items in F. We show this as follows: Let
n be the number of items in the sample space, nF be the number of items in F, and nEF be
the number of items in E ∩ F. Then

P (E ∩ F)

P (F)
=
nEF/n

nF/n
=
nEF
nF

,

which is the ratio of the number of items in E ∩ F to the number of items in F. As far as
the meaning is concerned, P (E|F) is our belief that event E contains the outcome (i.e., E
occurs) when we already know that event F contains the outcome (i.e., F occurred).

Example 6.5 Again, consider drawing the top card from a deck of cards. Let Jack be the
set of the four jacks, RedRoyalCard be the set of the six red royal cards,1 and Club be the
set of the thirteen clubs. Then

P (Jack) =
4

52
=

1

13

P (Jack|RedRoyalCard) =
P (Jack ∩ RedRoyalCard)

P (RedRoyalCard)
=

2/52

6/52
=

1

3

P (Jack|Club) =
P (Jack ∩ Club)

P (Club)
=

1/52

13/52
=

1

13
.

�

Notice in the previous example that P (Jack|Club) = P (Jack). This means that finding
out the card is a club does not change the likelihood that it is a jack. We say that the two
events are independent in this case, which is formalized in the following definition.

1A royal card is a jack, queen, or king.

i
i

i
i

i
i

i
i

6.1 Probability Basics 121

A A B B B B A B B

A B A B

Figure 6.1 Using the Principle of Indifference, we assign a probability of 1/13 to each
object.

Definition 6.3 Two events E and F are independent if one of the following holds:

1. P (E|F) = P (E) and P (E) 6= 0, P (F) 6= 0

2. P (E) = 0 or P (F) = 0�

Notice that the definition states that the two events are independent even though it
is in terms of the conditional probability of E given F. The reason is that independence
is symmetric. That is, if P (E) 6= 0 and P (F) 6= 0, then P (E|F) = P (E) if and only if
P (F|E) = P (F). It is straightforward to prove that E and F are independent if and only if
P (E ∩ F) = P (E)P (F).

If you have previously studied probability, you should have already been introduced to
the concept of independence. However, a generalization of independence, called conditional
independence, is not covered in many introductory texts. This concept is important to
the applications discussed in this book. We discuss it next.

Definition 6.4 Two events E and F are conditionally independent given G if P (G) 6= 0
and one of the following holds:

1. P (E|F ∩ G) = P (E|G) and P (E|G) 6= 0, P (F|G) 6= 0

2. P (E|G) = 0 or P (F|G) = 0.�

Notice that this definition is identical to the definition of independence except that
everything is conditional on G. The definition entails that E and F are independent once we
know that the outcome is in G. The next example illustrates this.

Example 6.6 Let Ω be the set of all objects in Figure 6.1. Using the Principle of Indif-
ference, we assign a probability of 1/13 to each object. Let Black be the set of all black
objects, White be the set of all white objects, Square be the set of all square objects, and A
be the set of all objects containing an A. We then have that

P (A) =
5

13

P (A|Square) =
3

8
.

So A and Square are not independent. However,

P (A|Black) =
3

9
=

1

3

P (A|Square ∩ Black) =
2

6
=

1

3
.

i
i

i
i

i
i

i
i

122 Chapter 6 Probability

We see that A and Square are conditionally independent given Black. Furthermore,

P (A|White) =
2

4
=

1

2

P (A|Square ∩White) =
1

2
.

So A and Square are also conditionally independent given White. �

Next, we discuss an important rule involving conditional probabilities. Suppose we have
n events E1,E2, . . . ,En such that

Ei ∩ Ej = ∅ for i 6= j

and

E1 ∪ E2 ∪ . . . ∪ En = Ω.

Such events are called mutually exclusive and exhaustive. Then the Law of Total
Probability says that for any other event F,

P (F) = P (F ∩ E1) + P (F ∩ E2) + · · ·+ P (F ∩ En). (6.1)

You are asked to prove this rule in the exercises. If P (Ei) 6= 0, then

P (F ∩ Ei) = P (F|Ei)P (Ei).

Therefore, if P (Ei) 6= 0 for all i, the law is often applied in the following form:

P (F) = P (F|E1)P (E1) + P (F|E2)P (E2) + · · ·+ P (F|En)P (En). (6.2)

Example 6.7 Suppose we have the objects discussed in Example 6.6. Then, according to
the Law of Total Probability,

P (A) = P (A|Black)P (Black) + P (A|White)P (White)

=

(
1

3

)(
9

13

)
+

(
1

2

)(
4

13

)
=

5

13
.

�

6.1.3 Bayes’ Theorem

We can compute conditional probabilities of events of interest from known probabilities
using the following theorem.

Theorem 6.2 (Bayes) Given two events E and F such that P (E) 6= 0 and P (F) 6= 0, we
have

P (E|F) =
P (F|E)P (E)

P (F)
. (6.3)

Furthermore, given n mutually exclusive and exhaustive events E1,E2, . . . ,En such that
P (Ei) 6= 0 for all i, we have for 1 ≤ i ≤ n,

P (Ei|F) =
P (F|Ei)P (Ei)

P (F|E1)P (E1) + P (F|E2)P (E2) + · · ·P (F|En)P (En)
. (6.4)

i
i

i
i

i
i

i
i

6.2 Random Variables 123

Proof. To obtain Equality 6.3, we first use the definition of conditional probability as
follows:

P (E|F) =
P (E ∩ F)

P (F)
and P (F|E) =

P (F ∩ E)

P (E)
.

Next we multiply each of these equalities by the denominator on its right side to show that

P (E|F)P (F) = P (F|E)P (E)

because they both equal P (E ∩ F). Finally, we divide this last equality by P (F) to obtain
our result.

To obtain Equality 6.4, we place the expression for F, obtained using the Law of Total
Probability (Equality 6.2), in the denominator of Equality 6.3.

Both of the formulas in the preceding theorem are called Bayes’ theorem because the
original version was developed by Thomas Bayes, published in 1763. The first enables us
to compute P (E|F) if we know P (F|E), P (E), and P (F); the second enables us to compute
P (Ei|F) if we know P (F|Ej) and P (Ej) for 1 ≤ j ≤ n. The next example illustrates the use
of Bayes’ theorem.

Example 6.8 Let Ω be the set of all objects in Figure 6.1, and assign each object a prob-
ability of 1/13. Let A be the set of all objects containing an A, B be the set of all objects
containing a B, and Black be the set of all black objects. Then, according to Bayes’ theorem,

P (Black|A) =
P (A|Black)P (Black)

P (A|Black)P (Black) + P (A|White)P (White)

=

(
1
3

) (
9
13

)(
1
3

) (
9
13

)
+
(

1
2

) (
4
13

) =
3

5
,

which is the same value we get by computing P (Black|A) directly. �

In the previous example we can just as easily compute P (Black|A) directly. We will see
a useful application of Bayes’ theorem in Section 6.4.

6.2 Random Variables

In this section we present the formal definition and mathematical properties of a random
variable. In Section 6.4 we show how they are developed in practice.

6.2.1 Probability Distributions of Random Variables

Definition 6.5 Given a probability space (Ω, P), a random variable X is a function
whose domain is Ω.�

The range of X is called the space of X.

Example 6.9 Let Ω contain all outcomes of a throw of a pair of six-sided dice, and let P
assign 1/36 to each outcome. Then Ω is the following set of ordered pairs:

Ω = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), . . . , (6, 5), (6, 6)}.

Let the random variable X assign the sum of each ordered pair to that pair, and let the
random variable Y assign odd to each pair of odd numbers and even to a pair if at least one
number in that pair is an even number. The following table shows some of the values of X
and Y .

i
i

i
i

i
i

i
i

124 Chapter 6 Probability

e X(e) Y (e)
(1, 1) 2 odd
(1, 2) 3 even
· · · · · · · · ·

(2, 1) 3 even
· · · · · · · · ·

(6, 6) 12 even

The space of X is {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, and that of Y is {odd,even}. �

For a random variable X, we use X = x to denote the subset containing all elements
e ∈ Ω that X maps to the value of x. That is,

X = x represents the event {e such that X(e) = x}.

Note the difference between X and x: small x denotes any element in the space of X,
whereas X is a function.

Example 6.10 Let Ω, P , and X be as in Example 6.9. Then

X = 3 represents the event {(1, 2), (2, 1)} and

P (X = 3) =
1

18
.

Notice that ∑
x∈space(X)

P (X = x) = 1.

Example 6.11 Let Ω, P , and Y be as in Example 6.9. Then∑
y∈space(Y)

P (Y = y) = P (Y = odd) + P (Y = even)

=
9

36
+

27

36
= 1.

�

We call the values of P (X = x) for all values x of X the probability distribution
of the random variable X. When we are referring to the probability distribution of X, we
write P (X).

We often use x alone to represent the event X = x, and so we write P (x) instead of
P (X = x) when we are referring to the probability that X has value x.

Example 6.12 Let Ω, P , and X be as in Example 6.9. Then if x = 3,

P (x) = P (X = x) =
1

18
.

�

If we want to refer to all values of, for example, the random variables X, we sometimes
write P (X) instead of P (X = x) or P (x).

i
i

i
i

i
i

i
i

6.2 Random Variables 125

Example 6.13 Let Ω, P , and X be as in Example 6.9. Then for all values of X

P (X) > 1.

�

Given two random variables X and Y , defined on the same sample space Ω, we use
X = x, Y = y to denote the subset containing all elements e ∈ Ω that are mapped both by
X to x and by Y to y. That is,

X = x, Y = y represents the event

{e such that X(e) = x} ∩ {e such that Y (e) = y}.

Example 6.14 Let Ω, P , X, and Y be as in Example 6.9. Then

X = 4, Y = odd represents the event {(1, 3), (3, 1)},

and so
P (X = 4, Y = odd) = 1/18.

�

We call P (X = x, Y = y) the joint probability distribution of X and Y . If A =
{X,Y }, we also call this the joint probability distribution of A. Furthermore, we often just
say joint distribution or probability distribution.

For brevity, we often use x, y to represent the eventX = x, Y = y, and so we write P (x, y)
instead of P (X = x, Y = y). This concept extends to three or more random variables. For
example, P (X = x, Y = y, Z = z) is the joint probability distribution function of the
random variables X, Y , and Z, and we often write P (x, y, z).

Example 6.15 Let Ω, P , X, and Y be as in Example 6.9. Then, if x = 4 and y = odd,

P (x, y) = P (X = x, Y = y) = 1/18.

�

Similar to the case of a single random variable, if we want to refer to all values of, for
example, the random variables X and Y , we sometimes write P (X,Y) instead of P (X =
x, Y = y) or P (x, y).

Example 6.16 Let Ω, P , X, and Y be as in Example 6.9. It is left as an exercise to show
that for all values of x and y, we have

P (X = x, Y = y) < 1/2.

For example, as shown in Example 6.14,

P (X = 4, Y = odd) = 1/18 < 1/2.

We can restate this fact as follows: for all values of X and Y , we have that

P (X,Y) < 1/2.

�

i
i

i
i

i
i

i
i

126 Chapter 6 Probability

If, for example, we let A = {X,Y } and a = {x, y}, we use

A = a to represent X = x, Y = y,

and we often write P (a) instead of P (A = a).

Example 6.17 Let Ω, P , X, and Y be as in Example 6.9. If A = {X,Y }, a = {x, y},
x = 4, and y = odd, then

P (A = a) = P (X = x, Y = y) = 1/18.

�

Recall the Law of Total Probability (Equalities 6.1 and 6.2). For two random variables
X and Y , these equalities are as follows:

P (X = x) =
∑
y

P (X = x, Y = y). (6.5)

P (X = x) =
∑
y

P (X = x|Y = y)P (Y = y). (6.6)

It is left as an exercise to show this.

Example 6.18 Let Ω, P , X, and Y be as in Example 6.9. Then, owing to Equality 6.5,

P (X = 4) =
∑
y

P (X = 4, Y = y)

= P (X = 4, Y = odd) + P (X = 4, Y = even) =
1

18
+

1

36
=

1

12
.

�

Example 6.19 Again, let Ω, P , X, and Y be as in Example 6.9. Then, due to Equality
6.6,

P (X = 4) =
∑
y

P (X = x|Y = y)P (Y = y)

= P (X = 4|Y = odd)P (Y = odd) +

P (X = 4|Y = even)P (Y = even)

=
2

9
× 9

36
+

1

27
× 27

36
=

1

12
.

�

In Equality 6.5 the probability distribution P (X = x) is called the marginal proba-
bility distribution of X relative to the joint distribution P (X = x, Y = y) because it is
obtained using a process similar to adding across a row or column in a table of numbers.
This concept also extends in a straightforward way to three or more random variables. For
example, if we have a joint distribution P (X = x, Y = y, Z = z) of X, Y , and Z, the
marginal distribution P (X = x, Y = y) of X and Y is obtained by summing over all values
of Z. If A = {X,Y }, we also call this the marginal probability distribution of A.

The next example reviews the concepts covered so far concerning random variables.

i
i

i
i

i
i

i
i

6.2 Random Variables 127

Example 6.20 Let Ω be a set of 12 individuals, and let P assign 1/12 to each individual.
Suppose the genders, heights, and wages of the individuals are as follows:

Case Gender Height (inches) Wage ($)
1 female 64 30,000
2 female 64 30,000
3 female 64 40,000
4 female 64 40,000
5 female 68 30,000
6 female 68 40,000
7 male 64 40,000
8 male 64 50,000
9 male 68 40,000
10 male 68 50,000
11 male 70 40,000
12 male 70 50,000

Let the random variables G, H, and W , respectively, assign the gender, height, and wage
of an individual to that individual. Then the probability distributions of the three random
variables are as follows (recall that, for example, P (g) represents P (G = g)).

g P (g)
female 1/2
male 1/2

h P (h)
64 1/2
68 1/3
70 1/6

w P (w)
30,000 1/4
40,000 1/2
50,000 1/4

The joint distribution of G and H is as follows:

g h P (g, h)
female 64 1/3
female 68 1/6
female 70 0
male 64 1/6
male 68 1/6
male 70 1/6

The following table also shows the joint distribution of G and H and illustrates that the
individual distributions can be obtained by summing the joint distribution over all values
of the other variable.

h 64 68 70 Distribution of G
g

female 1/3 1/6 0 1/2
male 1/6 1/6 1/6 1/2

Distribution of H 1/2 1/3 1/6

The table that follows shows the first few values in the joint distribution of G, H, and W .
There are eighteen values in all, many of which are 0.

i
i

i
i

i
i

i
i

128 Chapter 6 Probability

g h w P (g, h, w)
female 64 30,000 1/6
female 64 40,000 1/6
female 64 50,000 0
female 68 30,000 1/12
· · · · · · · · · · · ·

�

We close with the chain rule for random variables, which says that given n random
variables X1, X2, . . . , Xn, defined on the same sample space Ω,

P (x1, x2, . . . , xn) = P (xn|xn−1, xn−2, . . . , x1) · · · × P (x2|x1)× P (x1)

whenever P (x1, x2, . . . , xn) 6= 0. It is straightforward to prove this rule using the rule for
conditional probability.

Example 6.21 Suppose we have the random variables in Example 6.20. Then, according
to the chain rule for all values g, h, and w of G, H, and W,

P (g, h, w) = P (w|h, g)P (h|g)P (g).

There are eight combinations of values of the three random variables. The table that follows
shows that the equality holds for two of the combinations.

g h w P (g, h, w) P (w|h, g)P (h|g)P (g)

female 64 30,000 1
6

(
1
2

) (
2
3

) (
1
2

)
= 1

6

female 64 40,000 1
12

(
1
2

) (
1
3

) (
1
2

)
= 1

12

It is left as an exercise to show that the equality holds for the other six combinations. �

6.2.2 Independence of Random Variables

The notion of independence extends naturally to random variables.

Definition 6.6 Suppose we have a probability space (Ω, P) and two random variables X
and Y defined on Ω. Then X and Y are independent if, for all values x of X and y of Y ,
the events X = x and Y = y are independent. When this is the case, we write

IP (X,Y),

where IP stands for independent in P .�

Example 6.22 Let Ω be the set of all cards in an ordinary deck, and let P assign 1/52 to
each card. Define random variables as follows:

Variable Value Outcomes Mapped to This Value
R r1 All royal cards

r2 All nonroyal cards
S s1 All spades

s2 All nonspades

i
i

i
i

i
i

i
i

6.2 Random Variables 129

Then the random variables R and S are independent. That is,

IP (R,S).

To show this, we need show for all values of r and s that

P (r|s) = P (r).

The following table shows that this is the case.

s r P (r) P (r|s)
s1 r1

12
52 = 3

13
3
13

s1 r2
40
52 = 10

13
10
13

s2 r1
12
52 = 3

13
9
39 = 3

13

s2 r2
40
52 = 10

13
30
39 = 10

13

�

The concept of conditional independence also extends naturally to random variables.

Definition 6.7 Suppose we have a probability space (Ω, P) and three random variables X,
Y , and Z defined on Ω. Then X and Y are conditionally independent given Z if for all
values x of X, y of Y , and z of Z, whenever P (z) 6= 0, the events X = x and Y = y are
conditionally independent given the event Z = z. When this is the case, we write

IP (X,Y |Z).�

Example 6.23 Let Ω be the set of all objects in Figure 6.1, and let P assign 1/13 to each
object. Define random variables S (for shape), L (for letter), and C (for color) as follows:

Variable Value Outcomes Mapped to This Value
L l1 All objects containing an A

l2 All objects containing a B
S s1 All square objects

s2 All circular objects
C c1 All black objects

c2 All white objects

Then L and S are conditionally independent given C. That is,

IP (L, S|C).

To show this, we need to show for all values of l, s, and c that

P (l|s, c) = P (l|c).

There are a total of eight combinations of the three variables. The table that follows shows
that the equality holds for two of the combinations:

c s l P (l|s, c) P (l|c)
c1 s1 l1

2
6 = 1

3
3
9 = 1

3

c1 s1 l2
4
6 = 2

3
6
9 = 2

3

i
i

i
i

i
i

i
i

130 Chapter 6 Probability

It is left as an exercise to show that it holds for the other combinations. �

Independence and conditional independence can also be defined for sets of random vari-
ables.

Definition 6.8 Suppose we have a probability space (Ω, P) and two sets A and B containing
random variables defined on Ω. Let a and b be sets of values of the random variables in A
and B, respectively. The sets A and B are said to be independent if, for all values of the
variables in the sets a and b, the events A = a and B = b are independent. When this is the
case, we write

IP (A,B),

where IP stands for independent in P .�

Example 6.24 Let Ω be the set of all cards in an ordinary deck, and let P assign 1/52 to
each card. Define random variables as follows:

Variable Value Outcomes Mapped to This Value
R r1 All royal cards

r2 All nonroyal cards
T t1 All tens and jacks

t2 All cards that are neither tens nor jacks
S s1 All spades

s2 All nonspades

Then the sets {R, T} and {S} are independent. That is,

IP ({R, T}, {S}). (6.7)

To show this, we need to show for all values of r, t, and s that

P (r, t|s) = P (r, t).

There are eight combinations of values of the three random variables. The table that follows
shows that the equality holds for two of the combinations.

s r t P (r, t|s) P (r, t)

s1 r1 t1
1
13

4
52 = 1

13

s1 r1 t2
2
13

8
52 = 2

13

It is left as an exercise to show that it holds for the other combinations. �

When a set contains a single variable, we do not ordinarily show the braces. For example,
we write Independency 6.7 as

IP ({R, T}, S).

Definition 6.9 Suppose we have a probability space (Ω, P) and three sets A, B, and C
containing random variables defined on Ω. Let a, b, and c be sets of values of the random
variables in A, B, and C, respectively. Then the sets A and B are said to be conditionally
independent given the set C if, for all values of the variables in the sets a, b, and c,
whenever P (c) 6= 0, the events A = a and B = b are conditionally independent given the
event C = c. When this is the case, we write

IP (A,B|C).�

i
i

i
i

i
i

i
i

6.3 Meaning of Probability 131

Figure 6.2 Objects with five properties.

Example 6.25 Suppose we use the Principle of Indifference to assign probabilities to the
objects in Figure 6.2, and we define random variables as follows:

Variable Value Outcomes Mapped to This Value
V v1 All objects containing a 1

v2 All objects containing a 2
L l1 All objects covered with lines

l2 All objects not covered with lines
C c1 All gray objects

c2 All white objects
S s1 All square objects

s2 All circular objects
F f1 All objects containing a number in a large font

f2 All objects containing a number in a small font

It is left as an exercise to show for all values of v, l, c, s, and f that

P (v, l|s, f, c) = P (v, l|c).

So we have

IP ({V,L}, {S, F}|C).

�

6.3 Meaning of Probability

When one does not have the opportunity to study probability theory in depth, one is often
left with the impression that all probabilities are computed using ratios. Next, we discuss
the meaning of probability in more depth and show that this is not how probabilities are
ordinarily determined.

i
i

i
i

i
i

i
i

132 Chapter 6 Probability

6.3.1 Relative Frequency Approach to Probability

A classic textbook example of probability concerns tossing a coin. Because the coin is
symmetrical, we use the Principle of Indifference to assign

P (Heads) = P (Tails) = .5.

Suppose that instead we toss a thumbtack. It can also land one of two ways. That is, it could
land on its flat end, which we will call heads, or it could land with the edge of the flat end
and the point touching the ground, which we will call tails. Because the thumbtack is not
symmetrical, we have no reason to apply the Principle of Indifference and assign probabilities
of .5 to both outcomes. How then should we assign the probabilities? In the case of the
coin, when we assign P (heads) = .5, we are implicitly assuming that if we tossed the coin a
large number of times it would land heads about half the time. That is, if we tossed the coin
1000 times, we would expect it to land heads about 500 times. This notion of repeatedly
performing the experiment gives us a method for computing (or at least estimating) the
probability. That is, if we repeat an experiment many times, we are fairly certain that the
probability of an outcome is about equal to the fraction of times the outcome occurs. For
example, a student tossed a thumbtack 10,000 times and it landed heads 3761 times. So

P (heads) ≈ 3761

10,000
= .3761.

Indeed, in 1919, Richard von Mises used the limit of this fraction as the definition of prob-
ability. That is, if n is the number of tosses and Sn is the number of times the thumbtack
lands heads, then

P (heads) ≡ lim
n→∞

Sn
n
.

This definition assumes that a limit actually is approached. That is, it assumes that the
ratio does not fluctuate. For example, there is no reason a priori to assume that the ratio
is not .5 after 100 tosses, .1 after 1000 tosses, .5 after 10,000 tosses, .1 after 100,000 tosses,
and so on. Only experiments in the real world can substantiate that a limit is approached.
In 1946, J. E. Kerrich conducted many such experiments using games of chance in which
the Principle of Indifference seemed to apply (e.g., drawing a card from a deck). His results
indicated that the relative frequency does appear to approach a limit and that this limit is
the value obtained using the Principle of Indifference.

This approach to probability is called the relative frequency approach to proba-
bility, and probabilities obtained using this approach are called relative frequencies. A
frequentist is someone who feels this is the only way we can obtain probabilities. Note
that, according to this approach, we can never know a probability for certain. For example,
if we tossed a coin 10,000 times and it landed heads 4991 times, we would estimate

P (heads) ≈ 4991

10,000
= .4991.

On the other hand, if we used the Principle of Indifference, we would assign P (Heads) =
.5. In the case of the coin, the probability might not actually be .5 because the coin might
not be perfectly symmetrical. For example, Kerrich [1946] found that the six came up the
most in the toss of a die and that one came up the least. This makes sense because, at that
time, the spots on the die were hollowed out of the die, so the die was lightest on the side
with a six. On the other hand, in experiments involving cards or urns, it seems we can be
certain of probabilities obtained using the Principle of Indifference.

Example 6.26 Suppose we toss an asymmetrical six-sided die, and in 1000 tosses we ob-
serve that each of the six sides comes up the following number of times.

i
i

i
i

i
i

i
i

6.3 Meaning of Probability 133

Side Number of Times
1 250
2 150
3 200
4 70
5 280
6 50

So we estimate P (1) ≈ .25, P (2) ≈ .15, P (3) ≈ .2, P (4) ≈ .07, P (5) ≈ .28, and P (6) ≈ .05.
�

Repeatedly performing an experiment (so as to estimate a relative frequency) is called
sampling, and the set of outcomes is called a random sample (or simply a sample). The
set from which we sample is called a population.

Example 6.27 Suppose our population is all males in the United States between the ages
of 31 and 85, and we are interested in the probability of such males having high blood
pressure. Then, if we sample 10,000 males, this set of males is our sample. Furthermore, if
3210 have high blood pressure, we estimate

P (High Blood Pressure) ≈ 3210

10,000
= .321.

�

Technically, we should not call the set of all current males in this age group the popu-
lation. Rather, the theory says that there is a propensity for a male in this group to have
high blood pressure and that this propensity is the probability. This propensity might not
be equal to the fraction of current males in the group who have high blood pressure. In
theory, we would have to have an infinite number of males to determine the probability
exactly. The current set of males in this age group is called a finite population. The
fraction of them with high blood pressure is the probability of obtaining a male with high
blood pressure when we sample him from the set of all males in the age group. This latter
probability is simply the ratio of males with high blood pressure.

When doing statistical inference, we sometimes want to estimate the ratio in a finite
population from a sample of the population, and at other times we want to estimate a
propensity from a finite sequence of observations. For example, TV raters ordinarily want
to estimate the actual fraction of people in a nation watching a show from a sample of
those people. On the other hand, medical scientists want to estimate the propensity with
which males tend to have high blood pressure from a finite sequence of males. One can
create an infinite sequence from a finite population by returning a sampled item back to the
population before sampling the next item. This is called sampling with replacement. In
practice, it is rarely done, but ordinarily the finite population is so large that statisticians
make the simplifying assumption that it is done. That is, they do not replace the item but
still assume that the ratio is unchanged for the next item sampled.

In sampling, the observed relative frequency is called the maximum likelihood esti-
mate (MLE) of the probability (limit of the relative frequency) because it is the estimate
of the probability that makes the observed sequence most probable when we assume that
the trials (repetitions of the experiment) are probabilistically independent.

Another facet of von Mises’ relative frequency approach is that a random process is
generating the sequence of outcomes. According to von Mises’ theory, a random process
is defined as a repeatable experiment for which the infinite sequence of outcomes is assumed
to be a random sequence. Intuitively, a random sequence is one that shows no regularity

i
i

i
i

i
i

i
i

134 Chapter 6 Probability

or pattern. For example, the finite binary sequence 1011101100 appears random, whereas
the sequence 1010101010 does not, because it has the pattern 10 repeated five times. There
is evidence that experiments such as coin tossing and dice throwing are indeed random
processes. In 1971, Iversen et al. ran many experiments with dice indicating the sequence
of outcomes is random. It is believed that unbiased sampling also yields a random sequence
and is therefore a random process. See [van Lambalgen, 1987] for a formal treatment of
random sequences.

6.3.2 Subjective Approach to Probability

If we tossed a thumbtack 10,000 times and it landed heads 6000 times, we would estimate
P (heads) to be .6. Exactly what does this number approximate? Is there some probability,
accurate to an arbitrary number of digits, of the thumbtack landing heads? It seems not.
Indeed, as we toss the thumbtack, its shape will slowly be altered, changing any propensity
for landing heads. As another example, is there really an exact propensity for a male
in a certain age group to have high blood pressure? Again, it seems not. So it seems
that, outside of games of chance involving cards and urns, the relative frequency notion
of probability is only an idealization. Regardless, we obtain useful insights concerning our
beliefs from this notion. For example, after the thumbtack lands heads 6000 times out of
10,000 tosses, we believe it has about a .6 chance of landing heads on the next toss, and
we bet accordingly. That is, we would consider it fair to win $0.40 if the thumbtack landed
heads and to lose $1 − $0.40 = $0.60 if the thumbtack landed tails. Because the bet is
considered fair, the opposite position, namely, to lose $0.40 if the thumbtack landed heads
and to win $0.60 if it landed tails, would also be considered fair. Hence, we would take
either side of the bet. This notion of a probability as a value that determines a fair bet
is called a subjective approach to probability, and probabilities assigned within this
frame are called subjective probabilities or beliefs. A subjectivist is someone who
feels we can assign probabilities within this framework. More concretely, in this approach
the subjective probability of an uncertain event is the fraction p of units of money we
would agree it is fair to give (lose) if the event does not occur in exchange for the promise
to receive (win) 1− p units if it does occur.

Example 6.28 Suppose we estimate that P (heads) = .6. This means that we would agree
it is fair to give $0.60 if heads does not occur for the promise to receive $0.40 if it does
occur. Notice that if we repeated the experiment 100 times and heads did occur 60% of the
time (as we expected), we would win 60($0.40) = $24 and lose 40($0.60) = $24. That is, we
would break even. �

Unlike the relative frequency approach to probability, the subjective approach allows
us to compute probabilities of events that are not repeatable. A classic example concerns
betting at the racetrack. To decide how to bet, we must first determine how likely we feel it
is that each horse will win. A particular race has never been run before and never will be run
again, so we cannot look at previous occurrences of the race to obtain our belief. Rather,
we obtain this belief from a careful analysis of the horses’ overall previous performances,
of track conditions, of jockeys, and so on. Clearly, not everyone will arrive at the same
probabilities based on their analyses. This is why these probabilities are called subjective.
They are particular to individuals. In general, they do not have objective values in nature on
which we all must agree. Of course, if we did do an experiment such as tossing a thumbtack
10,000 times and it landed heads 6,000 times, most would agree that the probability of heads
is about .6. Indeed, de Finetti [1937] showed that if we make certain reasonable assumptions
about your beliefs, this would have to be your probability.

i
i

i
i

i
i

i
i

6.4 Random Variables in Applications 135

Before pursuing this matter further, we discuss a concept related to probability, namely,
odds. Mathematically, if P (E) is the probability of event E, then the odds O(E) are defined
by

O(E) =
P (E)

1− P (E)
.

As far as betting, O(E) is the amount of money we would consider it fair to lose if E did
not occur in return for gaining $1 if E did occur.

Example 6.29 Let E be the event that the horse Oldnag wins the Kentucky Derby. If we
feel P (E) = .2, then

O(E) =
P (E)

1− P (E)
=

.2

1− .2
= .25.

This means we would consider it fair to lose $0.25 if the horse did not win in return for
gaining $1 if it did win.

If we state the fair bet in terms of probability (as discussed previously), we would consider
it fair to lose $0.20 if the horse did not win in return for gaining $0.80 if it did win. Notice
that with both methods, the ratio of the amount won to the amount lost is 4, so they are
consistent in the way they determine betting behavior. �

At the racetrack, the betting odds shown are the odds against the event. That is, they
are the odds of the event not occurring. If P (E) = .2 and ¬E denotes that E does not
occur, then

O(¬E) =
P (¬E)

1− P (¬E)
=

.8

1− .8
= 4,

and the odds shown at the racetrack are 4 to 1 against E. If you bet on E, you will lose $1
if E does not occur and win $4 if E does occur. Note that these are the track odds based on
the betting behavior of all participants. If you believe P (E) = .5, for you the odds against
E are 1 to 1 (even money), and you should jump at the chance to get 4 to 1.

Some individuals are uncomfortable at being forced to consider wagering to assess a
subjective probability. There are other methods for ascertaining these probabilities. One of
the most popular is the following, which was suggested by Lindley in 1985. This method
says an individual should liken the uncertain outcome to a game of chance by considering
an urn containing white and black balls. The individual should determine for what fraction
of white balls the individual would be indifferent between receiving a small prize if the
uncertain event E happened (or turned out to be true) and receiving the same small prize
if a white ball was drawn from the urn. That fraction is the individual’s probability of the
outcome. Such a probability can be constructed using binary cuts. If, for example, you were
indifferent when the fraction was .8, for you P (E) = .8. If someone else were indifferent
when the fraction was .6, for that individual P (E) = .6. Again, neither individual is right
or wrong.

It would be a mistake to assume that subjective probabilities are only important in
gambling situations. Actually, they are important in all the applications discussed in this
book. In the next section we illustrate interesting uses of subjective probabilities.

See [Neapolitan, 1989] for more on the two approaches to probability presented here.

6.4 Random Variables in Applications

Although it is mathematically elegant to first specify a sample space and then define random
variables on the space, in practice this is not what we ordinarily do. In practice some single
entity or set of entities has features, the states of which we want to determine but that we

i
i

i
i

i
i

i
i

136 Chapter 6 Probability

cannot determine for certain. So we settle for determining how likely it is that a particular
feature is in a particular state. An example of a single entity is a jurisdiction in which we are
considering introducing an economically beneficial chemical that might be carcinogenic. We
would want to determine the relative risk of the chemical versus its benefits. An example
of a set of entities is a set of patients with similar diseases and symptoms. In this case, we
would want to diagnose diseases based on symptoms. As mentioned in Section 6.3.1, this
set of entities is called a population, and technically it is usually not the set of all currently
existing entities, but rather is, in theory, an infinite set of entities.

In these applications, a random variable represents some feature of the entity being
modeled, and we are uncertain as to the value of this feature. In the case of a single entity,
we are uncertain as to the value of the feature for that entity, whereas in the case of a set of
entities, we are uncertain as to the value of the feature for some members of the set. To help
resolve this uncertainty, we develop probabilistic relationships among the variables. When
there is a set of entities, we assume the entities in the set all have the same probabilistic
relationships concerning the variables used in the model. When this is not the case, our
analysis is not applicable. In the case of the scenario concerning introducing a chemical,
features may include the amount of human exposure and the carcinogenic potential. If
these are our features of interest, we identify the random variables HumanExposure and
CarcinogenicPotential. (For simplicity, our illustrations include only a few variables. An
actual application ordinarily includes many more than this.) In the case of a set of patients,
features of interest might include whether or not diseases such as lung cancer are present,
whether or not manifestations of diseases such as a chest X-ray are present, and whether or
not causes of diseases such as smoking are present. Given these features, we would identify
the random variables ChestXray, LungCancer, and SmokingHistory, respectively.

After identifying the random variables, we distinguish a set of mutually exclusive and
exhaustive values for each of them. The possible values of a random variable are the dif-
ferent states that the feature can take. For example, the state of LungCancer could be
present or absent, the state of ChestXray could be positive or negative, and the state of
SmokingHistory could be yes or no, where yes might mean the patient has smoked one or
more packs of cigarettes every day during the past 10 years.

After distinguishing the possible values of the random variables (i.e., their spaces), we
judge the probabilities of the random variables having their values. However, in general, we
do not directly determine values in a joint probability distribution of the random variables.
Rather, we ascertain probabilities concerning relationships among random variables that are
accessible to us. We can then reason with these variables using Bayes’ theorem to obtain
probabilities of events of interest. The next example illustrates this idea.

Example 6.30 Suppose Sam plans to marry, and to obtain a marriage license in the state
in which he resides, one must take the blood test enzyme-linked immunosorbent assay
(ELISA), which tests for the presence of human immunodeficiency virus (HIV). Sam takes
the test and it comes back positive for HIV. How likely is it that Sam is infected with HIV?
Without knowing the accuracy of the test, Sam really has no way of knowing how probable
it is that he is infected with HIV.

The data we ordinarily have on such tests are the true positive rate (sensitivity) and
the true negative rate (specificity). The true positive rate is the number of people who both
have the infection and test positive divided by the total number of people who have the
infection. For example, to obtain this number for ELISA, 10,000 people who were known
to be infected with HIV were identified. This was done using the Western Blot, which is
the gold standard test for HIV. These people were then tested with ELISA, and 9990 tested
positive. Therefore, the true positive rate is .999. The true negative rate is the number of
people who both do not have the infection and test negative divided by the total number of

i
i

i
i

i
i

i
i

6.4 Random Variables in Applications 137

people who do not have the infection. To obtain this number for ELISA, 10,000 nuns who
denied risk factors for HIV infection were tested. Of these, 9980 tested negative using the
ELISA test. Furthermore, the 20 positive-testing nuns tested negative using the Western
Blot test. So, the true negative rate is .998, which means that the false positive rate is .002.
We therefore formulate the following random variables and subjective probabilities:

P (ELISA = positive|HIV = present) = .999 (6.8)

P (ELISA = positive|HIV = absent) = .002. (6.9)

You might wonder why we called these subjective probabilities when we obtained them
from data. Recall that the frequentist approach says that we can never know the actual
relative frequencies (objective probabilities); we can only estimate them from data. However,
within the subjective approach, we can make our beliefs (subjective probabilities) equal to
the fractions obtained from the data.

It might seem that Sam almost certainly is infected with HIV, as the test is so accurate.
However, notice that neither the probability in Equality 6.8 nor the one in Equality 6.9 is
the probability of Sam being infected with HIV. Because we know that Sam tested positive
on ELISA, that probability is

P (HIV = present|ELISA = positive).

We can compute this probability using Bayes’ theorem if we know P (HIV = present).
Recall that Sam took the blood test simply because the state required it. He did not take it
because he thought for any reason he was infected with HIV. So, the only other information
we have about Sam is that he is a male in the state in which he resides. Therefore if
1 in 100,000 men in Sam’s state is infected with HIV, we assign the following subjective
probability:

P (HIV = present) = .00001.

We now employ Bayes’ theorem to compute

P (present|positive)

=
P (positive|present)P (present)

P (positive|present)P (present) + P (positive|absent)P (absent)

=
(.999)(.00001)

(.999)(.00001) + (.002)(.99999)

= .00497.

Surprisingly, we are fairly confident that Sam is not infected with HIV. �

A probability such as P (HIV = present) is called a prior probability because, in a
particular model, it is the probability of some event prior to updating the probability of
that event, within the framework of that model, using new information. Do not mistakenly
think it means a probability prior to any information. A probability such as P (HIV =
present|ELISA = positive) is called a posterior probability because it is the probability
of an event after its prior probability has been updated, within the framework of some model,
based on new information. In the previous example, the reason the posterior probability is
small even though the test is fairly accurate, is that the prior probability is extremely low.
The next example shows how dramatically a different prior probability can change things.

Example 6.31 Suppose Mary and her husband have been trying to have a baby and she
suspects she is pregnant. She takes a pregnancy test that has a true positive rate of .99 and

i
i

i
i

i
i

i
i

138 Chapter 6 Probability

a false positive rate of .02. Suppose further that 20% of all women who take this pregnancy
test are indeed pregnant. Using Bayes’ theorem we then have

P (present|positive)

=
P (positive|present)P (present)

P (positive|present)P (present) + P (positive|absent)P (absent)

=
(.99)(.2)

(.99)(.2) + (.02)(.8)

= .92523.

�

Even though Mary’s test was less accurate than Sam’s test, she probably is pregnant,
whereas he probably is not infected with HIV. This is due to the prior information. There
was a significant prior probability (.2) that Mary was pregnant, because only women who
suspect they are pregnant on other grounds take pregnancy tests. Sam, however, took his
test because he wanted to get married. We had no prior information indicating he could be
infected with HIV.

In the previous examples, we obtained our beliefs (subjective probabilities) directly from
the observed fractions in the data. Although this is often done, it is not necessary. In
general, we obtain our beliefs from our information about the past, which means that these
beliefs are a composite of all our experience rather than merely observed relative frequencies.
The following is an example:

Example 6.32 Suppose you feel there is a .4 probability the NASDAQ will go up at least
1% today. This is based on your knowledge that, after trading closed yesterday, excellent
earnings were reported by several big companies in the technology sector, and that U.S.
crude oil supplies unexpectedly increased. Furthermore, if the NASDAQ does go up at least
1% today, you feel there is a .1 probability that your favorite stock NTPA will go up at least
10% today. If the NASDAQ does not go up at least 1% today, you feel there is only a .02
probability NTPA will go up at least 10% today. You have these beliefs because you know
from the past that NTPA’s performance is linked to overall performance in the technology
sector. You checked NTPA after the close of trading, and you noticed it went up over 10%.
What is the probability that the NASDAQ went up at least 1%? Using Bayes’ theorem we
have

P (NASDAQ = up 1%|NTPA = up 10%)

=
P (up 10%|up 1%)P (up 1%)

P (up 10%|up 1%)P (up 1%) + P (up 10%|not up 1%)P (not up 1%)

=
(.1) (.4)

(.1) (.4) + (.02)(.6)
= .769.

�

In the previous three examples we used Bayes’ theorem to compute posterior subjective
probabilities from known subjective probabilities. In a rigorous sense, we can only do this
within the subjective framework. That is, because strict frequentists say we can never
know probabilities for certain, they cannot use Bayes’ theorem. They can only do analyses
such as the computation of a confidence interval for the value of an unknown probability
based on the data. These techniques are discussed in any classic statistics text such as
[Hogg and Craig, 1972]. Because subjectivists are the ones who use Bayes’ theorem, they
are often called Bayesians.

i
i

i
i

i
i

i
i

6.5 Probability in the Wumpus World 139

Start

Pit ?

Breeze

Agent

1

1

2 3 4

2

3

4

Pit ?OK

OKOK

Visited

Visited
Pit ?

Visited

Breeze

Figure 6.3 Current knowledge of the wumpus world after the agent visits squares [2,1] and
[1,2] and discovers breeezes in both of them.

6.5 Probability in the Wumpus World

The wumpus world described in Section 2.3.2 involved uncertainty in that we did not know
the location of the wumpus, gold, or any pits. However, we did not quantify this uncertainty
numerically, and therefore could not use probability theory to reason in the world. Suppose
now that we are able to quantify some of this uncertainty. Specifically, suppose that we
assign a probability of .1 to a pit being located in each of these squares. This probability
could be obtained from knowledge of how the game is generated (i.e., we could be told that
a pit is assigned to each square with probability .1), or it could be based on your subjective
judgment obtained from experience playing the game. Regardless, we can use probability
theory to guide our decision. We show how next.

Suppose that the agent has moved to square [1,2] and [2,1], discovers breezes in both of
them, and therefore currently has the knowledge shown in Figure 6.3. The agent can give up
or take a risk by visiting square [1,3] or [2,2]. A purely logical agent would make a random
choice between them because neither one appears any more risky than the other. Let’s see
if a probabilistic agent can quantify this risk to help decide between the two.

Let P11 be a random variable whose value is p13 if there is a pit in square [1,1] and
whose value is ¬p13 otherwise. Random variables for breezes and other squares are defined
similarly. Furthermore, let Brz denote the known facts about the breezes and Pit denote
the known facts about the pits. That is,

Brz = {¬b11, b12, b21}

Pit = {¬p11,¬p12,¬p21} .

The agent’s total knowledge consists of Brz and Pit. The agent would like to determine the
probabilities of p13 and p22 conditional on this knowledge. To that end, by Bayes’ theorem

i
i

i
i

i
i

i
i

140 Chapter 6 Probability

P (p13|Brz, P it) =
P (Brz|p13, P it)P (p13, P it)

P (Brz|p13, P it)P (p13, P it) + P (Brz|¬p13, P it)P (¬p13, P it)

=
P (Brz|p13, P it)P (p13)

P (Brz|p13, P it)P (p13) + P (Brz|¬p13, P it)P (¬p13)
.

We need to compute P (Brz|p13, P it) and P (Brz|¬p13, P it). Owing to the Law of Total
Probability, we have that

P (Brz|p13, P it) =
∑

P22,P33

P (Brz|p13, P it, P22, P31)P (P22, P31|p13, P it)

=
∑

P22,P33

P (Brz|p13, P it, P22, P31)P (P22)P (P31)

= P (Brz|p13, P it, p22, p31)P (p22)P (p31) +

P (Brz, |p13, P it, p22,¬p31)P (p22)P (¬p31) +

P (Brz|p13, P it,¬p22, p31)P (¬p22)P (p31) +

P (Brz|p13, P it,¬p22,¬p31)P (¬p22)P (¬p31)

= (1) (.1)(.1) + (1) (.9)(.1) + (1) (.9)(.1) + (0) (.9)(.9)

= .19.

Note that the conditional probability of Brz is either 1 or 0, depending on whether we
condition on pits being next to both square [1,2] and square [2,1] or we condition on no pit
being next to at least one of them. It is left as an exercise to show in the same way that

P (Brz|¬p13, P it) = .1.

Plugging these probabilities into Bayes’ theorem, we now have that

P (p13|Brz, P it) =
P (Brz|p13, P it)P (p13)

P (Brz|p13, P it)P (p13) + P (Brz|¬p13, P it)P (¬p13)

=
(.19) (.1)

(.19) (.1) + (.1)(.9)

= .174.

It is left as an exercise to show that P (p22|Brz, P it) = .917. So it is far less risky to visit
square [1,3], which is what the agent should do next. Intuitively, there are two items of
evidence indicating there is a pit in square [2,2] (breezes in both square [1,2] and square
[2,1]), whereas there is only one item of evidence indicating there is a pit in square [1,3].

EXERCISES

Section 6.1

Exercise 6.1 Let the experiment be drawing the top card from a deck of 52 cards. Let
Heart be the event a heart is drawn, and RoyalCard be the event a royal card is drawn.

1. Compute P (Heart).

i
i

i
i

i
i

i
i

Exercises 141

2. Compute P (RoyalCard).

3. Compute P (Heart ∪ RoyalCard).

Exercise 6.2 Prove Theorem 6.1.

Exercise 6.3 Example 6.5 showed that, in the draw of the top card from a deck, the event
Jack is independent of the event Club. That is, it showed P (Jack| Club) = P (Jack).

1. Show directly that the event Club is independent of the event Jack. That is, show
P (Club|Jack) = P (Club). Show also that P (Jack ∩ Club) = P (Jack)P (Club).

2. Show, in general, that if P (E) 6= 0 and P (F) 6= 0, then P (E|F) = P (E) if and only if
P (F|E) = P (F), and each of these holds if and only if P (E ∩ F) = P (E)P (F).

Exercise 6.4 The complement of a set E consists of all the elements in Ω that are not in
E and is denoted by E.

1. Show that E is independent of F if and only if E is independent of F, which is true if
and only if E is independent of F.

2. Example 6.6 showed that, for the objects in Figure 6.1, A and Square are conditionally
independent given Black and given White. Let B be the set of all objects containing a
B, and Circle be the set of all circular objects. Use the result just obtained to conclude
that A and Circle, B and Square, and B and Circle are each conditionally independent
given either Black or White.

Exercise 6.5 Show that in the draw of the top card from a deck of cards, the event E =
{kh, ks, qh} and the event F = {kh, kc, qh} are conditionally independent given the event
G = {kh, ks, kc, kd}. Determine whether E and F are conditionally independent given G.

Exercise 6.6 Prove the Law of Total Probability, which says that if we have n mutually
exclusive and exhaustive events E1,E2, . . . ,En, then for any other event F,

P (F) = P (F ∩ E1) + P (F ∩ E2) + · · ·+ P (F ∩ En).

Exercise 6.7 Let Ω be the set of all objects in Figure 6.1, and assign each object a proba-
bility of 1/13. Let A be the set of all objects containing an A, and Square be the set of all
square objects. Compute P (A|Square) directly and using Bayes’ theorem.

Section 6.2

Exercise 6.8 Consider the probability space and random variables given in Example 6.20.

1. Determine the joint distribution of S and W , the joint distribution of W and H, and
the remaining values in the joint distribution of S, H, and W .

2. Show that the joint distribution of S and H can be obtained by summing the joint
distribution of S, H, and W over all values of W .

Exercise 6.9 Let a joint probability distribution be given. Using the Law of Total Proba-
bility, show that, in general, the probability distribution of any one of the random variables
is obtained by summing over all values of the other variables.

i
i

i
i

i
i

i
i

142 Chapter 6 Probability

Exercise 6.10 The chain rule says that for n random variables X1, X2, . . . , Xn, defined on
the same sample space Ω,

P (x1, x2, . . . , xn) = P (xn|xn−1, xn−2, . . .x1) · · · × P (x2|x1)× P (x1)

whenever P (x1, x2, . . . , xn) 6= 0. Prove this rule.

Exercise 6.11 Use the results in Exercise 6.4 (1) to conclude that it was only necessary in
Example 6.22 to show that P (r, t) = P (r, t|s1) for all values of r and t.

Exercise 6.12 Suppose we have two random variables X and Y with spaces {x1, x2} and
{y1, y2}, respectively.

1. Use the results in Exercise 6.4 (1) to conclude that we need only show P (y1|x1) = P (y1)
to conclude IP (X,Y).

2. Develop an example showing that if X and Y both have spaces containing more than
two values, then we need to check whether P (y|x) = P (y) for all values of x and y to
conclude IP (X,Y).

Exercise 6.13 Consider the probability space and random variables given in Example 6.20.

1. Are H and W independent?

2. Are H and W conditionally independent given G?

3. If this small sample is indicative of the probabilistic relationships among the variables
in some population, what causal relationships might account for this dependency and
conditional independency?

Exercise 6.14 In Example 6.25, it was left as an exercise to show for all values v of V , l
of L, c of C, s of S, and f of F that

P (v, l|s, f, c) = P (v, l|c).

Show this.

Section 6.3

Exercise 6.15 Kerrich [1946] performed experiments such as tossing a coin many times,
and he found that the relative frequency did appear to approach a limit. That is, for
example, he found that after 100 tosses, the relative frequency may have been .51; after
1000 tosses it may have been .508; after 10,000 tosses it may have been .5003; and after
100,000 tosses it may have been .50006. The pattern is that the 5 in the first place to the
right of the decimal point remains in all relative frequencies after the first 100 tosses; the 0
in the second place remains in all relative frequencies after the first 1000 tosses; and so on.
Toss a thumbtack at least 1000 times and see if you obtain similar results.

Exercise 6.16 Pick some upcoming event. It could be a sporting event or it could be the
event that you will get an A in this course. Determine your probability of the event using
Lindley’s [1985] method of comparing the uncertain event to a draw of a ball from an urn.
(See the discussion following Example 6.29.)

i
i

i
i

i
i

i
i

Exercises 143

Section 6.4

Exercise 6.17 A forgetful nurse is supposed to give Mr. Nguyen a pill each day. The
probability that the nurse will forget to give the pill on a given day is .3. If Mr. Nguyen
receives the pill, the probability he will die is .1. If he does not receive the pill, the probability
he will die is .8. Mr. Nguyen died today. Use Bayes’ theorem to compute the probability
that the nurse forgot to give him the pill.

Exercise 6.18 An oil well might be drilled on Professor Neapolitan’s farm in Texas. Based
on what has happened on similar farms, we judge the probability of oil being present to be
.5, the probability of only natural gas being present to be .2, and the probability of neither
being present to be .3. If oil is present, a geological test will give a positive result with
probability .9; if only natural gas is present, it will give a positive result with probability
.3; and if neither is present, the test will be positive with probability .1. Suppose the test
comes back positive. Use Bayes’ theorem to compute the probability that oil is present.

Section 6.5

Exercise 6.19 At the end of Section 6.5 it was left as an exercise to show P (Brz|¬p13, P it) =
.1. Do this.

Exercise 6.20 At the end of Section 6.5 it was left as an exercise to show P (p22|Brz, P it) =
.917. Do this.

Exercise 6.21 In Section 6.5 we assumed that a pit is assigned to each square with prob-
ability of .1, and found that the probability that a pit is located in square [1,3] is less than
the probability that a pit is located in square [2,2]. Investigate whether it is less probable
that a pit is located in square [1,3] regardless of the value of this probability. If so, is it
really necessary to make a subjective judgment of this probability to guide our decision?

i i

Chapter 7

Uncertain Knowledge
Representation

EarthquakeBurglar

Alarm

In the introduction to Chapter 6, we discussed the following situation. Suppose that in
the past few years, Mr. Holmes has noticed that frequently earthquakes have caused his
burglar alarm to sound. The burglar alarm concerns his home but it is wired to sound in
his office, which is some distance from his home. Presently, he is sitting in his office, and
the burglar alarm sounds. He then rushes home, assuming that there is a good chance that
his residence has been burglarized. On the way home, he hears on the radio that there
has been an earthquake. He then reasons that the earthquake may well have triggered the
alarm, and therefore it is much less likely that he has been burglarized. We now add more
to the story. Suppose next that his neighbor Dr. Watson calls and says that he saw a
suspicious-looking character lurking around Mr. Holmes’ house. Mr. Holmes would then
view this as additional evidence that he has indeed been burglarized and feel it is now more
probable that he has been burglarized.

i
i

i
i

i
i

i
i

146 Chapter 7 Uncertain Knowledge Representation

EarthquakeBurglar

Alarm

B E

ALLurker

CCall

Figure 7.1 A causal network representing Mr. Holmes’ knowledge.

Pearl [1986] conjectured that uncertain knowledge is structured with causal edges be-
tween propositions, we can represent this knowledge with a causal network, and we can
model uncertain reasoning by traversing links in this network. The model does not entail
that the entire network exists at a cognitive level at any particular time. Rather, it says
that a human develops individual causal links between pairs of propositions and recalls and
reasons with these links as needed. For example, in the current situation, we have the
following propositions:

A: Mr. Holmes’ burglar alarm sounds.

B: Mr. Holmes’ residence is burglarized.

E: There is an earthquake.

L: There is an individual lurking around the house.

C: Neighbor calls to report a lurker.

The causal network model says that Mr. Holmes has the following cognitive rep-
resentation of the burglar-alarm situation: a burglar (B) usually causes his alarm (A) to
sound; earthquakes (E) often cause his alarm to sound; and a burglar might lurk around
the house (L) and be seen by the neighbor, causing the neighbor to call (C) to report the
lurker. We call these causal relationships “causal edges.” The causal network representation
of this knowledge appears in Figure 7.1. When Mr. Holmes learns his alarm has sounded, he
reasons along the edge between B and A in the direction of A to conclude he has probably
been burglarized. When he later learns there has been an earthquake, he reasons along the
edge between E and A in the direction of A to conclude that the earthquake explains away
the alarm, and then he reasons along the edge between B and A in the direction of B to
conclude that it is much less likely that he has been burglarized. When his neighbor calls
(C) to report a lurker, he reasons along the edge between L and C in the direction of L to
conclude there probably was a lurker, and then he reasons along the edge between L and B
in the direction of B to infer that it is now more likely he has been burglarized.

Mr. Holmes uses these same causal links to reason in the other direction. For example, if
Mr. Holmes learns (in his office) he has been burglarized, he reasons along the edge between
B and A in the direction of A to conclude that his alarm probably sounded.

i
i

i
i

i
i

i
i

7.1 Intuitive Introduction to Bayesian Networks 147

P(HIV = present) = .00001

P(HIV = absent) = .99999
P(ELISA = positive | HIV = present) = .999

P(ELISA = negative | HIV = present) = .001

P(ELISA = positive | HIV = absent) = .002

P(ELISA = negative | HIV = absent) = .998

ELISAHIV

Figure 7.2 A two-node Bayesian network.

As noted in Chapter 6, regardless of how well this model represents human reasoning,
it helped give rise to the field called Bayesian networks. This chapter introduces Bayesian
networks. In Sections 7.1 and 7.2 we define Bayesian networks and discuss their properties.
Section 7.3 shows how causal graphs often yield Bayesian networks. In Section 7.4 we dis-
cuss doing probabilistic inference using Bayesian networks. Section 7.5 introduces Bayesian
networks containing continuous variables. Section 7.6 shows a technique for determining
the probability distributions needed in Bayesian networks. Finally, Section 7.7 shows a
large-scale application of Bayesian networks.

7.1 Intuitive Introduction to Bayesian Networks

Recall that in Example 6.30, we computed the probability of Joe having the HIV virus,
given that he tested positive for it. Specifically, we knew that

P (ELISA = positive|HIV = present) = .999

P (ELISA = positive|HIV = absent) = .002

P (HIV = present) = .00001.

We then employed Bayes’ theorem to compute

P (present|positive)

=
P (positive|present)P (present)

P (positive|present)P (present) + P (positive|absent)P (absent)

=
(.999)(.00001)

(.999)(.00001) + (.002)(.99999)

= .00497.

We summarize the information used in this computation in Figure 7.2, which is a two-
node/variable Bayesian network. Notice that it represents the random variables HIV and
ELISA by nodes in a directed acyclic graph (DAG) and the causal relationship between
these variables with an edge from HIV to ELISA. That is, the presence of HIV has a
causal effect on whether the test result is positive; so there is an edge from HIV to ELISA.
Besides showing a DAG representing the causal relationships, Figure 7.2 shows the prior
probability distribution of HIV and the conditional probability distribution of ELISA given
each value of its parent HIV . In general, Bayesian networks consist of a DAG, whose edges
represent relationships among random variables that are often (but not always) causal; the
prior probability distribution of every variable that is a root in the DAG; and the conditional

i
i

i
i

i
i

i
i

148 Chapter 7 Uncertain Knowledge Representation

Fraud

 P(F = yes) = .00001

P(F = no) = .99999

Gas

Age Sex

Jewelry

 P(A = < 30) = .25

 P(A = 30 to 50) = .40

 P(A = > 50) = .35
P(S = male) = .5

 P(S = female) = .5

 P(G = yes | F = yes) = .2

P(G = no |F = yes) = .8

 P(G = yes | F = no) = .01

P(G = no |F = no) = .99

 P(J = yes | F = yes, A = a, S = s) = .05

P(J = no | F = yes, A = a, S = s) = .95

 P(J = yes | F = no, A = < 30, S = male) = .0001

P(J = no | F = no, A = < 30, S = male) = .9999

 P(J = yes | F = no, A = < 30, S = female) = .0005

P(J = no | F = no, A = < 30, S = female) = .9995

P(J = yes | F = no, A = 30 to 50, S = male) = .0004

P(J = no | F = no, A = 30 to 50, S = male) = .9996

P(J = yes | F = no, A = 30 to 50, S = female) = .002

P(J = no | F = no, A = 30 to 50, S = female) = .998

 P(J = yes | F = no, A = > 50, S = male) = .0002

P(J = no | F = no, A = > 50, S = male) = .9998

 P(J = yes | F = no, A = > 50, S = female) = .001

P(J = no | F = no, A = > 50, S = female) = .999

Figure 7.3 Bayesian network for detecting credit card fraud.

probability distribution of every non-root variable given each set of values of its parents.
We use the terms node and variable interchangeably in discussing Bayesian networks.

Let’s illustrate a more complex Bayesian network by considering the problem of detecting
credit card fraud (taken from [Heckerman, 1996]). Suppose that we have identified the
following variables as being relevant to the problem:

Variable What the Variable Represents
Fraud (F) Whether the current purchase is fraudulent
Gas (G) Whether gas has been purchased in the past 24 hours
Jewelry (J) Whether jewelry has been purchased in the past 24 hours
Age (A) Age of the card holder
Sex (S) Sex of the card holder

These variables are all causally related. That is, a credit card thief is likely to buy gas and
jewelry, and middle-aged women are most likely to buy jewelry, whereas young men are
least likely to buy jewelry. Figure 7.3 shows a DAG representing these causal relationships.
Notice that it also shows the conditional probability distribution of every non-root variable
given each set of values of its parents. The Jewelry variable has three parents, and there is
a conditional probability distribution for every combination of values of those parents. The
DAG and the conditional distributions together constitute a Bayesian network.

You could have a few questions concerning this Bayesian network. First, you might
ask, “What value does it have?” That is, what useful information can we obtain from it?
Recall how we used Bayes’ theorem to compute P (HIV = present|ELISA = positive)

i
i

i
i

i
i

i
i

7.2 Properties of Bayesian Networks 149

from the information in the Bayesian network in Figure 7.2. Similarly, we can compute the
probability of credit card fraud given values of the other variables in this Bayesian network.
For example, we can compute P (F = yes|G = yes, J = yes,A = < 30, S = female). If
this probability is sufficiently high, we can deny the current purchase or require additional
identification. The computation is not a simple application of Bayes’ theorem as was the
case for the two-node Bayesian network in Figure 7.2. Rather it is done using sophisticated
inference algorithms.

Second, you might ask how we obtained the probabilities in the network. They can either
be obtained from the subjective judgments of an expert in the area or be learned from data.
(In Chapter 10 we discuss techniques for learning them from data.)

Finally, you could ask why we are including the variables for age and sex in the network
when the age and sex of the card holder has nothing to do with whether the card has been
stolen (fraud). That is, fraud has no causal effect on the card holder’s age or sex, and vice
versa. The reason we include these variables is because fraud, age, and sex all have a common
effect, namely the purchasing of jewelry. So, when we know jewelry has been purchased,
the three variables are rendered probabilistically dependent owing to discounting . This is
just like the situation involving the burglar, the alarm, and the earthquake. For example,
if jewelry has been purchased in the past 24 hours, it increases the likelihood of fraud.
However, if the card holder is a middle-aged woman, the likelihood of fraud is lessened
(discounted) because such women are prone to buying jewelry. That is, the fact that the
card holder is a middle-aged woman explains the jewelry purchase. On the other hand, if
the card holder is a young man, the likelihood of fraud is increased because such men are
unlikely to purchase jewelry.

We have informally introduced Bayesian networks, their properties, and their usefulness.
Next we formally develop their mathematical properties.

7.2 Properties of Bayesian Networks

After defining Bayesian networks, we show how they are ordinarily represented.

7.2.1 Definition of a Bayesian Network

First, let’s review some graph theory. A directed graph is a pair (V,E), where V is a finite,
nonempty set whose elements are called nodes (or vertices), and E is a set of ordered pairs
of distinct elements of V. Elements of E are called directed edges, and if (X,Y) ∈ E, we
say there is an edge from X to Y . The graph in Figure 7.4 (a) is a directed graph. The set
of nodes in that figure is

V = {X,Y, Z,W},

and the set of edges is

E = {(X,Y), (X,Z), (Y,W), (W,Z), (Z, Y)}.

A path in a directed graph is a sequence of nodes [X1, X2, . . . , Xk] such that (Xi−1, Xi) ∈
E for 2 ≤ i ≤ k. For example, [X,Y,W,Z] is a path in the directed graph in Figure 7.4 (a).
A chain in a directed graph is a sequence of nodes [X1, X2, . . . , Xk] such that (Xi−1, Xi) ∈ E
or (Xi, Xi−1) ∈ E for 2 ≤ i ≤ k. For example, [Y,W,Z,X] is a chain in the directed graph
in Figure 7.4 (b), but it is not a path. A cycle in a directed graph is a path from a node
to itself. In Figure 7.4 (a) [Y,W,Z, Y] is a cycle from Y to Y . However, in Figure 7.4 (b),
[Y,W,Z, Y] is not a cycle because it is not a path. A directed graph G is called a directed
acyclic graph (DAG) if it contains no cycles. The directed graph in Figure 7.4 (b) is a
DAG, whereas the one in Figure 7.4 (a) is not.

i
i

i
i

i
i

i
i

150 Chapter 7 Uncertain Knowledge Representation

Y Z

X

W

(a)

Y Z

X

W

(b)

Figure 7.4 Both graphs are directed graphs; only the one in (b) is a directed acyclic graph.

Given a DAG G = (V,E) and nodes X and Y in V, Y is called a parent of X if there
is an edge from Y to X, Y is called a descendant of X and X is called an ancestor of
Y if there is a path from X to Y , and Y is called a nondescendant of X if Y is not a
descendant of X and Y is not equal to X.

We can now state the following definition.

Definition 7.1 Suppose we have a joint probability distribution P of the random variables
in some set V and a DAG G = (V,E). We say that (G, P) satisfies the Markov condition if
for each variable X ∈ V, X is conditionally independent of the set of all its nondescendants
given the set of all its parents. Using the notation established in Chapter 6, Section 6.2.2,
this means that if we denote the sets of parents and nondescendants of X by PAX and NDX ,
respectively, then

IP (X,NDX |PAX).

If (G, P) satisfies the Markov condition, (G, P) is called a Bayesian network.�

Example 7.1 Recall Chapter 6, Figure 6.1, which appears again as Figure 7.5. In Chapter
6, Example 6.23, we let P assign 1/13 to each object in the figure, and we defined these
random variables on the set containing the objects.

Variable Value Outcomes Mapped to This Value
L l1 All objects containing an A

l2 All objects containing a B
S s1 All square objects

s2 All circular objects
C c1 All black objects

c2 All white objects

We then showed that L and S are conditionally independent given C. That is, using the
notation established in Chapter 2, Section 6.2.2, we showed

IP (L, S|C).

Consider the DAG G in Figure 7.6. For that DAG we have the following.

i
i

i
i

i
i

i
i

7.2 Properties of Bayesian Networks 151

A A B B B B A B B

A B A B

Figure 7.5 The random variables L and S are not independent, but they are conditionally
independent given C.

C

SL

Figure 7.6 The joint probability distribution of L, S, and C constitutes a Bayesian network
with this DAG.

Node Parents Nondescendants
L C S
S C L
C ∅ ∅

For (G, P) to satisfy the Markov condition, we need to have

IP (L, S|C)

IP (S,L|C).

Note that because C has no nondescendants, we do not have a conditional independency for
C. Because independence is symmetric, IP (L, S|C) implies IP (L, S|C). Therefore, all the
conditional independencies required by the Markov condition are satisfied, and (G, P) is a
Bayesian network. �

Next we further illustrate the Markov condition with a more complex DAG.

Example 7.2 Consider the DAG G in Figure 7.7. If (G, P) satisfied the Markov condition
with some probability distribution P of X, Y , Z, W , and V , we would have the following
conditional independencies.

Node Parents Nondescendants Conditional Independency
X ∅ ∅ None
Y X Z, V IP (Y, {Z, V }|X)
Z X Y IP (Z, Y |X)
W Y,Z X, V IP (W, {X,V }|{Y,Z})
V Z X, Y,W IP (V, {X,Y,W}|Z)

�

i
i

i
i

i
i

i
i

152 Chapter 7 Uncertain Knowledge Representation

Y Z

X

W V

Figure 7.7 A DAG.

7.2.2 Representation of a Bayesian Network

A Bayesian network (G, P), by definition, is a DAG G and joint probability distribution P
that together satisfy the Markov condition. Then why in Figures 7.2 and 7.3 do we show a
Bayesian network as a DAG and a set of conditional probability distributions? The reason
is that (G, P) satisfies the Markov condition if and only if P is equal to the product of its
conditional distributions in G. Specifically, we have the following theorem.

Theorem 7.1 (G, P) satisfies the Markov condition (and therefore is a Bayesian network)
if and only if P is equal to the product of its conditional distributions of all nodes given
their parents in G, whenever these conditional distributions exist.

Proof. The proof can be found in [Neapolitan, 2004].

Example 7.3 We showed that the joint probability distribution P of the random variables
L, S, and C defined on the set of objects in Figure 7.5 constitutes a Bayesian network
with the DAG G in Figure 7.6. Next we illustrate that the preceding theorem is correct by
showing that P is equal to the product of its conditional distributions in G. Figure 7.8 shows
those conditional distributions. We computed them directly from Figure 7.5. For example,
because there are nine black objects (c1) and six of them are squares (s1), we compute

P (s1|c1) =
6

9
=

2

3
.

The other conditional distributions are computed in the same way. To show that the joint
distribution is the product of the conditional distributions, we need to show for all values
of i, j, and k that

P (si, lj , ck) = P (si|ck)P (lj |ck)P (ck).

There are a total of eight combinations. We show the equality holds for one of them. It is
left as an exercise to show it holds for the others. We have directly from Figure 7.5 that

P (s1, l1, c1) =
2

13
.

From Figure 7.8 we have

P (s1|c1)P (l1|c1)P (c1) =
2

3
× 1

3
× 9

13
=

2

13
.

�

i
i

i
i

i
i

i
i

7.2 Properties of Bayesian Networks 153

C

SL

P(c
1
) = 9/13

P(c
2
) = 4/13

P(l
1
|c

1
) = 1/3

P(l
2
|c

1
) = 2/3

P(l
1
|c

2
) = 1/2

P(l
2
|c

2
) = 1/2

P(s
1
|c

1
) = 2/3

P(s
2
|c

1
) = 1/3

P(s
1
|c

2
) = 1/2

P(s
2
|c

2
) = 1/2

Figure 7.8 A Bayesian network representing the probability distribution P of the random
variables L, S, and C defined on the set of objects in Figure 7.5.

Owing to Theorem 7.1, we can represent a Bayesian network (G, P) using the DAG G and
the conditional distributions. We do not need to show every value in the joint distributions.
These values can all be computed from the conditional distributions. So we always show a
Bayesian network as the DAG and the conditional distributions as we did in Figures 7.2,
7.3, and 7.8. Herein lies the representational power of Bayesian networks. If there are a
large number of variables, there are many values in the joint distribution. However, if the
DAG is sparse, there are relatively few values in the conditional distributions. For example,
suppose all variables are binary, and a joint distribution satisfies the Markov condition with
the DAG in Figure 7.9. Then there are 210 = 1024 values in the joint distribution, but
only 2 + 2 + 8 × 8 = 68 values in the conditional distributions. Note that we are not even
including redundant parameters in this count. For example, in the Bayesian network in
Figure 7.8, it is not necessary to show P (c2) = 4/13 because P (c2) = 1 − P (c1). So we
need only show P (c1) = 9/13. If we eliminate redundant parameters, there are only 34
values in the conditional distributions for the DAG in Figure 7.9 but still 1023 in the joint
distribution. We see then that a Bayesian network is a structure for representing a joint
probability distribution succinctly.

We cannot take just any DAG and expect a joint distribution to equal the product
of its conditional distributions in the DAG. This is only true if the Markov condition is
satisfied. Exercise 7.2 illustrates that this is the case in this exercise. It seems that we are
left in a dilemma. That is, our goal is to succinctly represent a joint probability distribution
using a DAG and conditional distributions for the DAG (a Bayesian network) rather than
enumerating every value in the joint distribution. However, we do not know which DAG
to use until we check whether the Markov condition is satisfied, and, in general, we would
need to have the joint distribution to check this. A common way to resolve this dilemma is
to construct a causal DAG, which is a DAG in which there is an edge from X to Y if X
causes Y . The DAG concerning the burglar, the alarm, etc., and the DAGs in Figures 7.2
and 7.3 are causal; other DAGs shown so far in this chapter are not causal.

Next we discuss why a causal DAG should satisfy the Markov condition with the prob-
ability distribution of the variables in the DAG. A second way of obtaining the DAG is to
learn it from data. This second way is discussed in Chapter 10.

i
i

i
i

i
i

i
i

154 Chapter 7 Uncertain Knowledge Representation

Figure 7.9 If all variables are binary and a joint distribution satisifes the Markov condition
with this DAG, there are 1024 values in the joint distribution, but only 68 values in the
conditional distributions.

7.3 Causal Networks as Bayesian Networks

We first formalize the notion of causality.

7.3.1 Causality

One dictionary definition of a cause is “the one, such as a person, an event, or a condition,
that is responsible for an action or a result.” Although useful, this definition is certainly not
the last word on the concept of causation, which has been investigated for centuries (see,
e.g., [Hume, 1748]; [Piaget, 1966]; [Eells, 1991]; [Salmon, 1997]; [Spirtes et al., 1993; 2000];
[Pearl, 2000]). This definition does, however, shed light on an operational method for iden-
tifying causal relationships. That is, if the action of making variable X take some value
sometimes changes the value taken by variable Y , then we assume X is responsible for
sometimes changing Y ’s value, and we conclude X is a cause1 of Y . More formally, we say
we manipulate X when we force X to take some value, and we say X causes Y if there
is some manipulation of X that leads to a change in the probability distribution of Y . We
assume that if manipulating X leads to a change in the probability distribution of Y , then
X obtaining a value by any means whatsoever also leads to a change in the probability
distribution of Y . So we assume that causes and their effects are statistically correlated.
However, variables can be correlated without one causing the other.

A manipulation consists of a randomized controlled experiment (RCE) using some
specific population of entities (e.g., individuals with chest pain) in some specific context (e.g.,
they currently receive no chest pain medication and they live in a particular geographical
area). The causal relationship discovered is then relative to this population and this context.

Let’s discuss how the manipulation proceeds. We first identify the population of entities
we want to consider. Our random variables are features of these entities. Next we ascertain

1This notion of causality does not pertain to token causality, which concerns individual causal events
rather than probabilistic relationships among variables.

i
i

i
i

i
i

i
i

7.3 Causal Networks as Bayesian Networks 155

M X Y

P(m
1
) = .5

P(m
2
) = .5

P(x
1
|m

1
) = 1

P(x
2
|m

1
) = 0

P(x
1
|m

2
) = 0

P(x
2
|m

2
) = 1

Figure 7.10 A causal DAG representing a manipulation experiment.

the causal relationship we want to investigate. Suppose we are trying to determine if variable
X is a cause of variable Y . We then sample a number of entities from the population. For
every entity selected, we manipulate the value of X so that each of its possible values is
given to the same number of entities (if X is continuous, we choose the values of X according
to a uniform distribution). After the value of X is set for a given entity, we measure the
value of Y for that entity. The more the resultant data show a dependency between X and
Y , the more the data support that X causes Y . The manipulation of X can be represented
by a variable M that is external to the system being studied. There is one value mi of
M for each value xi of X; the probabilities of all values of M are the same; and when M
equals mi, X equals xi. That is, the relationship between M and X is deterministic. The
data support that X causes Y to the extent that the data indicate P (yi|mj) 6= P (yi|mk)
for j 6= k. Manipulation is actually a special kind of causal relationship that we assume
exists primordially and is within our control so that we can define and discover other causal
relationships. The causal DAG representing the manipulation just discussed appears in
Figure 7.10.

7.3.2 Causality and the Markov Condition

First, we more rigorously define a causal DAG. After that, we state the causal Markov
assumption and argue why it should be satisfied.

7.3.2.1 Causal DAGs

We say X is a cause of Y if a manipulation of X results in a change in the probability
distribution of Y . A causal graph is a directed graph containing a set of causally related
random variables V such that for every X,Y ∈ V there is an edge from X to Y if and
only if X is a cause of Y , and there is no subset of variables WXY of V such that if we
knew the values of the variables in WXY , a manipulation of X would no longer change the
probability distribution of Y . If there is an edge from X to Y , we call X a direct cause of
Y . Note that whether or not X is a direct cause of Y depends on the variables included in
V. A causal graph is a causal DAG if the causal graph is acyclic (i.e., there are no causal
feedback loops).

Example 7.4 Testosterone (T) is known to convert to dihydro-testosterone (D). Dihydro-
testosterone is believed to be the hormone necessary for erectile function (E). A study
in [Lugg et al., 1995] tested the causal relationship among these variables in rats. They

i
i

i
i

i
i

i
i

156 Chapter 7 Uncertain Knowledge Representation

testosterone dihydro-testosterone erectile function

T ED

Figure 7.11 A causal DAG.

manipulated testosterone to low levels and found that both dihydro-testosterone and erectile
function declined. They then held dihydro-testosterone fixed at low levels and found that
erectile function was low regardless of the manipulated value of testosterone. Finally, they
held dihydro-testosterone fixed at high levels and found that erectile function was high
regardless of the manipulated value of testosterone. So they learned that, in a causal graph
containing only the variables T , D, and E, T is a direct cause of D, and D is a direct cause
of E; but, although T is a cause of E, it is not a direct cause. So the causal graph (DAG)
is the one in Figure 7.11. �

Notice that if the variable D were not in the DAG in Figure 7.11, T would be called a
direct cause of E, and there would be an edge from T directly into E instead of the directed
path through D. In general, our edges always represent only the relationships among the
identified variables. It seems we can usually conceive of intermediate, unidentified variables
along each edge. Consider the following example taken from [Spirtes et al., 1993; 2000], p.
42:

If C is the event of striking a match, and A is the event of the match catching
on fire, and no other events are considered, then C is a direct cause of A. If,
however, we added B, the sulfur on the match tip achieved sufficient heat to
combine with the oxygen, then we could no longer say that C directly caused A,
but rather C directly caused B and B directly caused A. Accordingly, we say
that B is a causal mediary between C and A if C causes B and B causes A.

Note that, in this intuitive explanation, a variable name is used to also stand for a value of
the variable. For example, A is a variable whose value is on-fire or not-on-fire, and A is also
used to represent that the match is on fire. Clearly, we can add more causal mediaries. For
example, we could add the variable D, representing whether the match tip is abraded by a
rough surface. C would then cause D, which would cause B, and so on. We could go much
further and describe the chemical reaction that occurs when sulfur combines with oxygen.

Indeed, it seems we can conceive of a continuum of events in any causal description of a
process. We see then that the set of observable variables is observer dependent. Apparently
an individual, given myriad sensory input, selectively records discernible events and develops
cause/effect relationships among them. Therefore, rather than assuming that there is a set
of causally related variables out there, it seems more appropriate to only assume that, in
a given context or application, we identify certain variables and develop a set of causal
relationships among them.

7.3.2.2 Causal Markov Assumption

If we assume that the observed probability distribution P of a set of random variables V
satisfies the Markov condition with the causal DAG G containing the variables, we say we
are making the causal Markov assumption, and we call (G, P) a causal network. Why
should we make the causal Markov assumption? To answer this question, we show several
examples.

i
i

i
i

i
i

i
i

7.3 Causal Networks as Bayesian Networks 157

H

B

F

L

X

smoking history

bronchitis lung cancer

fatigue chest X-ray

Figure 7.12 A causal DAG.

Example 7.5 Consider again the situation involving testosterone (T), dihydro-testosterone
(D), and erectile function (E). Recall the manipulation study in [Lugg et al., 1995], which
we discussed in Example 7.4. This study showed that if we instantiate D, the value of E is
independent of the value of T . So there is experimental evidence that the Markov condition
is satisfied for a three-variable causal chain. �

Example 7.6 A history of smoking (H) is known to cause both bronchitis (B) and lung
cancer (L). Lung cancer and bronchitis both cause fatigue (F), but only lung cancer can
cause a chest X-ray (X) to be positive. There are no other causal relationships among the
variables. Figure 7.12 shows a causal DAG containing these variables. The causal Markov
assumption for that DAG entails the following conditional independencies.

Node Parents Nondescendants Conditional Independency
H ∅ ∅ None
B H L,X IP (B, {L,X}|H)
L H B IP (L,B|H)
F B,L H,X IP (F, {H,X}|{B,L})
X L H,B, F IP (X, {H,B, F}|L)

Given the causal relationship in Figure 7.12, we would not expect bronchitis and lung
cancer to be independent, because if someone had lung cancer it would make it more probable
that the individual smoked (as smoking can cause lung cancer), which would make it more
probable that another effect of smoking, namely bronchitis, was present. However, if we
knew someone smoked, it would already be more probable that the person had bronchitis.
Learning that the individual had lung cancer could no longer increase the probability of
smoking (which is now 1), which means it cannot change the probability of bronchitis. That
is, the variable H shields B from the influence of L, which is what the causal Markov
condition says. Similarly, a positive chest X-ray increases the probability of lung cancer,
which in turn increases the probability of smoking, which in turn increases the probability
of bronchitis. So, a chest X-ray and bronchitis are not independent. However, if we knew
the person had lung cancer, the chest X-ray could not change the probability of lung cancer
and thereby change the probability of bronchitis. So B is independent of X conditional on
L, which is what the causal Markov condition says. �

i
i

i
i

i
i

i
i

158 Chapter 7 Uncertain Knowledge Representation

S R

cold

sneezing runny nose

HC

S R

cold

sneezing runny nose

(a) (b)

C

Figure 7.13 The causal Markov assumption would not hold for the DAG in (a) if there is
a hidden common cause as depicted in (b).

There are three situations in which a causal graph should not satisfy the Markov condi-
tion. The first one is when there is a causal feedback loop. For example, perhaps studying
causes good grades, and good grades cause a student to study harder. When there is a
causal feedback loop, our graph is not even a DAG.

The second situation is when a hidden common cause is present. The following example
illustrates the problem with hidden common causes.

Example 7.7 Suppose we wanted to create a causal DAG containing the variables cold
(C), sneezing (S), and runny nose (R). Because a cold can cause both sneezing and a
runny nose and neither of these conditions can cause each other, we would create the DAG
in Figure 7.13 (a). The causal Markov condition for that DAG would entail IP (S,R|C).
However, if there were a hidden common cause of S and R as depicted in Figure 7.13 (b),
this conditional independency would not hold because even if the value of C were known,
S would change the probability of H, which in turn would change the probability of R.
Indeed, there is at least one other cause of sneezing and runny nose, namely hay fever. So
when making the causal Markov assumption, we must be certain that we have identified all
common causes. �

The final situation is more subtle. It concerns the presence of selection bias. The
following example illustrates this situation.

Example 7.8 The pharmaceutical company Merck had been marketing its drug finasteride
as medication for men with benign prostatic hyperplasia (BPH). Based on anecdotal evi-
dence, it seemed that there was a correlation between use of the drug and regrowth of scalp
hair. Let’s assume that Merck took a random sample from the population of interest and,
based on that sample, determined that there is a correlation between finasteride use and
hair regrowth. Assume further that there could be no hidden common causes of finasteride
use and hair regrowth. Should Merck conclude that finasteride causes hair regrowth and
therefore market it as a cure for baldness? Not necessarily. There is yet another possible
causal explanation for this correlation. Suppose that our sample (or even our entire popula-
tion) consists of individuals who have some (possibly hidden) effect of both finasteride and
hair regrowth. For example, suppose finasteride (F) and apprehension about lack of hair
regrowth (G) both cause hypertension,2 and our sample consists of individuals who have

2There is no evidence that either finasteride or apprehension about the lack of hair regrowth causes
hypertension. This example is only for the sake of illustration.

i
i

i
i

i
i

i
i

7.3 Causal Networks as Bayesian Networks 159

F G

T

Figure 7.14 T is instantiated.

hypertension (T). We say a node is instantiated when we know its value for the entity
currently being modeled. So we are saying the variable T is instantiated to the same value
for every entity in our sample. This situation is depicted in Figure 7.14, where the cross
through T means that the variable is instantiated. Usually, the instantiation of a common
effect creates a dependency between its causes because each cause explains the occurrence
of the effect, thereby making the other cause less likely. As noted earlier, psychologists call
this discounting . So, if this were the case, discounting would explain the correlation between
F and G.3 This type of dependency is called selection bias.4 �

In summary, we ordinarily can assume that the causal Markov assumption is justified
for a causal graph if the following conditions are satisfied:

1. There are no hidden common causes. That is, all common causes are represented in
the graph.

2. There are no causal feedback loops. That is, our graph is a DAG.

3. Selection bias is not present.

Note that, for the Markov condition to hold, there must be an edge from X to Y
whenever there is a causal path from X to Y besides the ones containing variables in our
graph. However, we did not stipulate this requirement above because it is entailed by the
definition of a causal graph. Recall that in a causal graph there is an edge from X to Y if
X is a direct cause of Y .

7.3.3 Markov Condition without Causality

We have argued that a causal DAG often satisfies the Markov condition with the joint
probability distribution of the random variables in the DAG. This does not mean that the
edges in a DAG in a Bayesian network must be causal. That is, a DAG can satisfy the
Markov condition with the probability distribution of the variables in the DAG without the
edges being causal. For example, we showed that the joint probability distribution P of
the random variables L, S, and C defined on the set of objects in Figure 7.5 satisfies the
Markov condition with the DAG G in Figure 7.6. However, we would not argue that the

3Merck eventually did a RCE involving 1879 men aged 18 to 41 with mild to moderate hair loss of the
vertex and anterior mid-scalp areas. Half of the men were given 1 mg of finasteride, whereas the other half
were given 1 mg of placebo. The results indicated that finasteride does indeed cause hair regrowth. Merck
now markets finasteride for hair regrowth under the label propecia.

4This could happen if our sample is a convenience sample, which is a sample in which the participants
are selected at the convenience of the researcher. The researcher makes no attempt to ensure that the sample
is an accurate representation of the larger population. In the context of the current example, this might be
the case if it is convenient for the researcher to observe males hospitalized for hypertension.

i
i

i
i

i
i

i
i

160 Chapter 7 Uncertain Knowledge Representation

color of the objects causes their shape or the letter that is on them. As another example, if
we reversed the edges in the DAG in Figure 7.11 to obtain the DAG E → DHT → T , the
new DAG would also satisfy the Markov condition with the probability distribution of the
variables, yet the edges would not be causal.

7.4 Inference in Bayesian Networks

As noted previously, a standard application of Bayes’ theorem is inference in a two-node
Bayesian network. Larger Bayesian networks address the problem of representing the joint
probability distribution of a large number of variables. For example, Figure 7.3 represents
the joint probability distribution of variables related to credit card fraud. Inference in
this network consists of computing the conditional probability of some variable (or set
of variables), given that other variables are instantiated to certain values. For example,
we might want to compute the probability of credit card fraud, given that gas has been
purchased, jewelry has been purchased, and the card holder is male. To accomplish this
inference we need sophisticated algorithms. First, we show simple examples illustrating how
one of these algorithms uses the Markov condition and Bayes’ theorem to do inference. Then
we reference papers describing some of the algorithms. Finally we show examples using the
algorithms to do inference.

7.4.1 Examples of Inference

Next we present some examples illustrating how the conditional independencies entailed by
the Markov condition can be exploited to accomplish inference in a Bayesian network.

Example 7.9 Consider the Bayesian network in Figure 7.15 (a). The prior probabilities of
all variables can be computed using the Law of Total Probability:

P (y1) = P (y1|x1)P (x1) + P (y1|x2)P (x2) = (.9)(.4) + (.8)(.6) = .84

P (z1) = P (z1|y1)P (y1) + P (z1|y2)P (y2) = (.7)(.84) + (.4)(.16) = .652

P (w1) = P (w1|z1)P (z1) + P (w1|z2)P (z2) = (.5)(.652) + (.6)(.348) = .5348.

These probabilities are shown in Figure 7.15 (b). Note that the computation for each variable
requires information determined for its parent. We can therefore consider this method a
message-passing algorithm in which each node passes its child a message needed to compute
the child’s probabilities. Clearly, this algorithm applies to an arbitrarily long linked list and
to trees. �

Example 7.10 Suppose now that X is instantiated for x1 in the Bayesian network in Figure
7.15. Because the Markov condition entails that each variable is conditionally independent of
X given its parent, we can compute the conditional probabilities of the remaining variables
by again using the Law of Total Probability (however, now with the background information
that X = x1) and passing messages down as follows:

P (y1|x1) = .9

P (z1|x1) = P (z1|y1, x1)P (y1|x1) + P (z1|y2, x1)P (y2|x1)

= P (z1|y1)P (y1|x1) + P (z1|y2)P (y2|x1) // Markov condition

= (.7)(.9) + (.4)(.1) = .67

i
i

i
i

i
i

i
i

7.4 Inference in Bayesian Networks 161

Y

Z

W

X P(x
1
) = .4

P(y
1
|x

1
) = .9

P(y
1
|x

2
) = .8

P(z
1
|y

1
) = .7

P(z
1
|y

2
) = .4

P(w
1
|z

1
) = .5

P(w
1
|z

2
) = .6

Y

Z

W

X
P(x

1
) = .4

P(y
1
) = .84

P(z
1
) = .652

P(w
1
) = .5348

(a) (b)

Figure 7.15 A Bayesian network appears in (a), and the prior probabilities of the variables
in that network are shown in (b). Each variable has only two values, so only the probability
of one is shown in (a).

P (w1|x1) = P (w1|z1, x1)P (z1|x1) + P (w1|z2, x1)P (z2|x1)

= P (w1|z1)P (z1|x1) + P (w1|z2)P (z2|x1)

= (.5)(.67) + (.6)(1− .67) = .533.

Clearly, this algorithm also applies to an arbitrarily long linked list and to trees.

�

The preceding example shows how we can use downward propagation of messages to
compute the conditional probabilities of variables below the instantiated variable. Next
we illustrate how to compute conditional probabilities of variables above the instantiated
variable.

Example 7.11 Suppose W is instantiated for w1 in the Bayesian network in Figure 7.15
(and no other variable is instantiated). We can use upward propagation of messages to com-
pute the conditional probabilities of the remaining variables. First, we use Bayes’ theorem
to compute P (z1|w1):

P (z1|w1) =
P (w1|z1)P (z1)

P (w1)
=

(.5)(.652)

.5348
= .6096.

Then, to compute P (y1|w1), we again apply Bayes’ theorem:

P (y1|w1) =
P (w1|y1)P (y1)

P (w1)
.

i
i

i
i

i
i

i
i

162 Chapter 7 Uncertain Knowledge Representation

X

Y Z
P(z

1
|x

1
) = .7

P(z
1
|x

2
) = .1

P(y
1
|x

1
) = .6

P(y
1
|x

2
) = .2

P(x
1
) = .1

P(w
1
|y

1
) = .9

P(w
1
|y

2
) = .3

T

P(t
1
|z

1
) = .8

P(t
1
|z

2
) = .1

W

Figure 7.16 A Bayesian network. Each variable has only two possible values, so only the
probability of one is shown.

We cannot yet complete this computation because we do not know P (w1|y1). We can obtain
this value using downward propagation as follows:

P (w1|y1) = (P (w1|z1)P (z1|y1) + P (w1|z2)P (z2|y1).

After doing this computation, also computing P (w1|y2) (because X will need this value)
and then determining P (y1|w1), we pass P (w1|y1) and P (w1|y2) to X. We then compute
P (w1|x1) and P (x1|w1) in sequence:

P (w1|x1) = (P (w1|y1)P (y1|x1) + P (w1|y2)P (y2|x1)

P (x1|w1) =
P (w1|x1)P (x1)

P (w1)
.

It is left as an exercise to perform these computations. Clearly, this upward propagation
scheme applies to an arbitrarily long linked list. �

The next example shows how to turn corners in a tree.

Example 7.12 Consider the Bayesian network in Figure 7.16. Suppose W is instantiated
for w1. We compute P (y1|w1) followed by P (x1|w1) using the upward propagation algorithm
just described. Then we proceed to compute P (z1|w1) followed by P (t1|w1) using the
downward propagation algorithm. This is left as an exercise. �

7.4.2 Inference Algorithms and Packages

By exploiting local independencies as we did in the previous subsection, Pearl [1986, 1988]
developed a message-passing algorithm for inference in Bayesian networks. Based on a
method originated in [Lauritzen and Spiegelhalter, 1988], Jensen et al. [1990] developed an
inference algorithm that involves the extraction of an undirected triangulated graph from
the DAG in a Bayesian network and the creation of a tree, whose vertices are the cliques
of this triangulated graph. Such a tree is called a junction tree. Conditional probabilities
are then computed by passing messages in the junction tree. Li and D’Ambrosio [1994] took

i
i

i
i

i
i

i
i

7.4 Inference in Bayesian Networks 163

Age

less30
bet30and50
greater50

25.0
40.0
35.0

Sex

male
female

50.0
50.0

Fraud

yes
no

 0 +
 100

Gas

yes
no

1.00
99.0

Jewelry

yes
no

.077
99.9

Figure 7.17 The fraud detection Bayesian network in Figure 7.3, implemented using Netica.

a different approach. They developed an algorithm that approximates finding the optimal
way to compute marginal distributions of interest from the joint probability distribution.
They call this symbolic probabilistic inference (SPI).

All these algorithms are worst-case nonpolynomial time. This is not surprising, as the
problem of inference in Bayesian networks is NP-hard [Cooper, 1990]. In light of this result,
approximation algorithms for inference in Bayesian networks have been developed. One such
algorithm, likelihood weighting, was developed independently in [Fung and Chang, 1990]
and [Shachter and Peot, 1990]. It is proven in [Dagum and Luby, 1993] that the problem of
approximate inference in Bayesian networks is also NP-hard. However, there are restricted
classes of Bayesian networks that are provably amenable to a polynomial-time solution (see
[Dagum and Chavez, 1993]). Indeed, a variant of the likelihood weighting algorithm, which
is worst-case polynomial time as long as the network does not contain extreme conditional
probabilities, appears in [Pradhan and Dagum, 1996].

Practitioners need not concern themselves with all these algorithms because a number
of packages for doing inference in Bayesian networks have been developed. A few of them
are shown here:

1. Netica (www.norsys.com/)

2. GeNIe (genie.sis.pitt.edu/)

3. HUGIN (/www.hugin.com/)

4. Elvira (www.ia.uned.es/˜elvira/)

5. BUGS (www.mrc-bsu.cam.ac.uk/bugs/)

In this book we ordinarily use Netica to illustrate inference. Figure 7.17 shows the fraud
detection network in Figure 7.3 implemented using Netica.

7.4.3 Inference Using Netica

Next we illustrate inference in a Bayesian network using Netica. Notice from Figure 7.17 that
Netica computes and shows the prior probabilities of the variables rather than showing the
conditional probability distributions. Probabilities are shown as percentages. For example,
the fact that there is a .077 next to yes in the Jewelry node means

P (Jewelry = yes) = .00077.

This is the prior probability of a jewelry purchase in the past 24 hours being charged to any
particular credit card.

www.norsys.com/
genie.sis.pitt.edu/
/www.hugin.com/
www.ia.uned.es/~elvira/
www.mrc-bsu.cam.ac.uk/bugs/

i
i

i
i

i
i

i
i

164 Chapter 7 Uncertain Knowledge Representation

Age

less30
bet30and50
greater50

 100
 0
 0

Sex

male
female

 100
 0

Fraud

yes
no

 0 +
 100

Gas

yes
no

1.00
99.0

Jewelry

yes
no

.010
 100

Age

less30
bet30and50
greater50

 100
 0
 0

Sex

male
female

 100
 0

Fraud

yes
no

0.50
99.5

Gas

yes
no

1.09
98.9

Jewelry

yes
no

 100
 0

(a)

(b)

Figure 7.18 In (a) Age has been instantiated to less30 and Sex has been instantiated to
male. In (b) Age has been instantiated to less30, Sex has been instantiated to male, and
Jewelry has been instantiated to yes.

After variables are instantiated, Netica shows the conditional probabilities of the other
variables given these instantiations. In Figure 7.18 (a) we instantiated Age to less30 and
Sex to male. So the fact that there is .010 next to yes in the Jewelry node means

P (Jewelry = yes|Age = less30, Sex = male) = .00010.

Notice that the probability of Fraud has not changed. This is what we would expect. First,
the Markov condition says that Fraud should be independent of Age and Sex. Second, it
seems they should be independent. That is, the fact that the card holder is a young man
should not make it more or less likely that the card is being used fraudulently. Figure 7.18
(b) has the same instantiations as Figure 7.18 (a) except that we have also instantiated
Jewelry to yes. Notice that the probability of Fraud has now changed. First, the jewelry
purchase makes Fraud more likely to be yes. Second, the fact that the card holder is a
young man means it is less likely the card holder would make the purchase, thereby making
Fraud even more likely to be yes.

In Figures 7.19 (a) and 7.19 (b), Gas and Jewelry have both been instantiated to yes.
However, in Figure 7.19 (a), the card holder is a young man, whereas in Figure 7.19 (b)
it is an older woman. This illustrates discounting of the jewelry purchase. When the card
holder is a young man, the probability of Fraud being yes is high (.0909). However, when
it is an older woman, it is still low (.0099) because the fact that the card holder is an older
woman explains the jewelry purchase.

i
i

i
i

i
i

i
i

7.5 Networks with Continuous Variables 165

Age

less30
bet30and50
greater50

 100
 0
 0

Sex

male
female

 100
 0

Fraud

yes
no

9.09
90.9

Gas

yes
no

 100
 0

Jewelry

yes
no

 100
 0

Age

less30
bet30and50
greater50

 0
 0

 100

Sex

male
female

 0
 100

Fraud

yes
no

0.99
99.0

Gas

yes
no

 100
 0

Jewelry

yes
no

 100
 0

(a)

(b)

Figure 7.19 Sex and Jewelry have both been instantiated to yes in both (a) and (b).
However, in (a) the card holder is a young man, whereas in (b) it is an older woman.

7.5 Networks with Continuous Variables

So far in all our Bayesian networks the variables have been discrete. Next we discuss
Bayesian networks that contain continuous variables.

7.5.1 Gaussian Bayesian Networks

Recall that the normal distribution is defined as follows:

Definition 7.2 The normal density function with parameters µ and σ, where −∞ <
µ <∞ and σ > 0, is

ρ(x) =
1√
2πσ

e
−

(x− µ)2

2σ2 −∞ < x <∞, (7.1)

and is denoted NormalDen(x;µ, σ2).
A random variables X that has this density function is said to have a normal distri-

bution.�

If the random variable X has the normal density function, then

E(X) = µ and V (X) = σ2,

where E denotes expected value and V denotes variance. The density function NormalDen(x; 0, 12)
is called the standard normal density function. Figure 7.20 shows this density function.

i
i

i
i

i
i

i
i

166 Chapter 7 Uncertain Knowledge Representation

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.1

0.2

0.3

0.4

x

y

Figure 7.20 The standard normal density function.

Gaussian Bayesian networks contain variables that are normally distributed. We
motivate such networks with the following example.

Example 7.13 Suppose you are considering taking a job that pays $10 an hour and you
expect to work 40 hours per week. However, you are not guaranteed 40 hours, and you
estimate the number of hours actually worked in a week to be normally distributed with
mean 40 and standard deviation 5. You have not yet fully investigated the benefits such
as bonus pay and nontaxable deductions (e.g., contributions to a retirement program).
However, you estimate these other influences on your gross taxable weekly income to also
be normally distributed with mean 0 (that is, you feel they about offset) and standard
deviation 30. Furthermore, you assume that these other influences are independent of your
hours worked.

We define the following random variables:

Variable What the Variable Represents
X Hours worked in the week
Y Salary obtained in the week

Based on the preceding discussion, X is distributed as follows:

ρ(x) = NormalDen(x; 40, 52).

A portion of your salary Y is a deterministic function of X. That is, you will receive 10x
dollars if you work x hours. However, your gross salary may be greater or less than this
based on the other influences we discussed. That is,

y = 10x+ εY ,

where
ρ(εY) = NormalDen(εY ; 0, 302).

Because the expected value of those other influences is 0,

E(Y |x) = 10x,

and because the variance of those other influences is 302,

V (Y |x) = 302.

i
i

i
i

i
i

i
i

7.5 Networks with Continuous Variables 167

Figure 7.21 A Gaussian Bayesian network.

prior probabilities

conditional probabilities given Y = 300

Figure 7.22 The Bayesian network in Figure 7.21, implemented in HUGIN.

So Y is distributed conditionally as follows:

ρ(y|x) = NormalDen(y; 10x, 302).

Therefore, the relationship between X and Y is represented by the Bayesian network in
Figure 7.21. �

The Bayesian network we just developed is an example of a Gaussian Bayesian network.
In general, in a Gaussian Bayesian network, the root is normally distributed, and each non-
root Y is a linear function of its parents plus an error term εY that is normally distributed
with mean 0 and variance σ2

Y . So if X1, X2, . . . and Xk are the parents of Y , then

Y = b1x1 + b2x2 + · · · bkxk + εY , (7.2)

where
ρ(εY) = NormalDen(εY ; 0, σ2

Y),

and Y is distributed conditionally as follows:

ρ(y|x) = NormalDen(y; b1x1 + b2x2 + · · · bkxk, σ2
Y).

i
i

i
i

i
i

i
i

168 Chapter 7 Uncertain Knowledge Representation

Fraud

 P(F = yes) = .00001

P(F = no) = .99999

Gas

Age Sex

Jewelry

 P(A = < 30) = .25

 P(A = 30 to 50) = .40

 P(A = > 50) = .35
P(S = male) = .5

 P(S = female) = .5

 P(G = yes | F = yes) = .2

P(G = no |F = yes) = .8

 P(G = yes | F = no) = .01

P(G = no |F = no) = .99

r (c|F = yes, J = yes) = NormalDen(c; 2000, 500)

Cost

r (c|F = no, J = yes) = NormalDen(c; 1000, 200)

r (c|F = yes, J = no) = NormalDen(c; 0, 0)

r (c|F = no, J = no) = NormalDen(c; 0, 0)

 P(J = yes | F = yes, A = a, S = s) = .05

P(J = no | F = yes, A = a, S = s) = .95

 P(J = yes | F = no, A = < 30, S = male) = .0001

P(J = no | F = no, A = < 30, S = male) = .9999

 P(J = yes | F = no, A = < 30, S = female) = .0005

P(J = no | F = no, A = < 30, S = female) = .9995

P(J = yes | F = no, A = 30 to 50, S = male) = .0004

P(J = no | F = no, A = 30 to 50, S = male) = .9996

P(J = yes | F = no, A = 30 to 50, S = female) = .002

P(J = no | F = no, A = 30 to 50, S = female) = .998

 P(J = yes | F = no, A = > 50, S = male) = .0002

P(J = no | F = no, A = > 50, S = male) = .9998

 P(J = yes | F = no, A = > 50, S = female) = .001

P(J = no | F = no, A = > 50, S = female) = .999

Figure 7.23 A hybrid Bayesian network modeling the situation in which the cost of the
jewelry is likely to be higher if the purchase was fraudulent.

The linear relationship in Equality 7.2 has been used in causal models in structural equa-
tions in psychology [Bentler, 1980], in path analysis in sociology and genetics [Kenny, 1979],
[Wright, 1921], and in economics [Joereskog, 1982]

Pearl [1988] developed an exact inference algorithm for Gaussian Bayesian networks.
It is described in [Neapolitan, 2004]. Most Bayesian network inference algorithms handle
Gaussian Bayesian networks. Some use the exact algorithm; others discretize the continuous
distribution and then do inference using discrete variables.

Example 7.14 Netica (www.norsys.com/) requires that we discretize continuous variables.
However, HUGIN [Olesen et al., 1992] does exact inference in Gaussian Bayesian networks.
Figure 7.22 shows the network in Figure 7.21 developed using HUGIN. The prior means
and variances are shown under the DAG. Suppose now you just got your paycheck and it
is only $300. Your spouse becomes suspicious that you did not work very many hours. So
your spouse instantiates Y to 300 in the network. The updated mean and variance of X
are shown in Figure 7.22 under the priors. It turns out that the expected value of the hours
you worked is only about 32.64. �

7.5.2 Hybrid Networks

Hybrid Bayesian networks contain both discrete and continuous variables. Figure 7.23 shows
a hybrid network, which will be discussed shortly. Methods for exact inference in hybrid
Bayesian networks have been developed. For example, Shenoy [2006] develops a method
that approximates general hybrid Bayesian networks by a mixture of Gaussian Bayesian
networks. However, packages often deal with hybrid networks by discretizing the continuous
distributions. HUGIN allows Gaussian variables to have discrete parents while still doing
exact inference. It could, therefore, handle the Bayesian network in the following example.

www.norsys.com/

i
i

i
i

i
i

i
i

7.5 Networks with Continuous Variables 169

Figure 7.24 A Bayesian network showing possible causal relationships among the expression
levels of genes. Only the conditional probability distribution of the leaf is shown.

Example 7.15 Recall the Bayesian network in Figure 7.3, which models fraudulent use of a
credit card. Suppose that if jewelry is purchased, the cost of the jewelry is likely to be greater
if the purchase was due to fraudulent use. We could model this situation using the hybrid
Bayesian network in Figure 7.23. The variable Cost is normally distributed given each set
of values of its discrete parents. Note that if J = no, the distribution is NormalDen(s; 0, 0).
This is the same as stating that

P (C = 0|F = yes, J = no) = 0.

However, we showed the conditional probability distribution as a normal distribution to be
consistent with the other distributions of C. �

Example 7.16 The protein transcription factor produced by one gene can have a causal
effect on the level of mRNA (called the gene expression level) of another gene. Researchers
endeavor to learn these causal effects from data. Gene expression level is often set as the
ratio of measured expression to a control level. So, values greater than 1 would indicate
a relatively high expression level, whereas values less than 1 would indicate a relatively
low expression level. Because gene expression levels are continuous, we could try learning
a Gaussian Bayesian network. Another approach taken in [Segal et al., 2005] is to learn a
network in which each variable is normally distributed given values of its parents. However,
each parent has only two values, namely high and low, which determine the conditional
distribution of the child. The value high represents all expression levels greater than 1,
and the value low represents all expression levels less than or equal to 1. Such a network
appears in Figure 7.24. The nodes in the network represent genes. This network is not
exactly hybrid, because every variable is continuous. However, the conditional distributions
are based on discrete values. �

i
i

i
i

i
i

i
i

170 Chapter 7 Uncertain Knowledge Representation

B

F

L

bronchitis lung cancer

fatigue

T

tuberculosis

p
B

= .6 p
T

= .7 p
L
= .8

Figure 7.25 We need to assess eight conditional probabilities for node F .

7.6 Obtaining the Probabilities

So far we have simply shown the conditional probability distributions in the Bayesian net-
works we have presented. We have not been concerned with how we obtained them. For
example, in the credit card fraud example, we simply stated that P (Age = less30) = .25.
However, how did we obtain this and other probabilities? As mentioned at the beginning of
this chapter, they can either be obtained from the subjective judgments of an expert in the
area, or they can be learned from data. In Chapter 10 we discuss techniques for learning
them from data. Here, we show a technique for simplifying the process when a node has
multiple parents. After discussing a problem in obtaining the conditional probabilities when
a node has multiple parents, we present models that address this problem.

7.6.1 Difficulty Inherent in Multiple Parents

Suppose lung cancer, bronchitis, and tuberculosis all cause fatigue, and we need to model
this relationship as part of a system for medical diagnosis. The portion of the DAG con-
cerning only these four variables appears in Figure 7.25. We need to assess eight conditional
probabilities for node F , one for each of the eight combinations of that node’s parents. That
is, we need to assess the following:

P (F = yes|B = no, T = no, L = no)

P (F = yes|B = no, T = no, L = yes)

· · ·

P (F = yes|B = yes, T = yes, L = yes).

It would be quite difficult to obtain these values either from data or from an expert physician.
For example, to obtain the value of P (F = yes|B = yes, T = yes, L = no) directly from
data, we would need a sufficiently large population of individuals who are known to have
both bronchitis and tuberculosis, but not lung cancer. To obtain this value directly from
an expert, the expert would have to be familiar with the likelihood of being fatigued when
two diseases are present and the third is not. Next, we show a method for obtaining these
conditional probabilities in an indirect way.

7.6.2 Basic Noisy OR-Gate Model

The noisy OR-gate model concerns the case where the relationships between variables or-
dinarily represent causal influences, and each variable has only two values. The situation

i
i

i
i

i
i

i
i

7.6 Obtaining the Probabilities 171

shown in Figure 7.25 is a typical example. Rather than assessing all eight probabilities, we
assess the causal strength of each cause for its effect. The causal strength is the proba-
bility of the cause resulting in the effect whenever the cause is present. In Figure 7.25 we
have shown the causal strength pB of bronchitis for fatigue to be .6. The assumption is that
bronchitis will always result in fatigue unless some unknown mechanism inhibits this from
taking place, and this inhibition takes place 40% of the time. So 60% of the time, bronchitis
will result in fatigue. Presently, we assume that all causes of the effect are articulated in the
DAG, and the effect cannot occur unless at least one of its causes is present. In this case,
mathematically we have

pB = P (F = yes|B = yes, T = no, L = no).

The causal strengths of tuberculosis and lung cancer for fatigue are also shown in Figure 7.25.
These three causal strengths should not be as difficult to ascertain as all eight conditional
probabilities. For example, to obtain pB from data, we only need a population of individuals
who have lung bronchitis and do not have the other diseases. To obtain pB from an expert,
the expert need only ascertain the frequency with which bronchitis gives rise to fatigue.

We can obtain the eight conditional probabilities we need from the three causal strengths
if we make one additional assumption. We need to assume that the mechanisms that inhibit
the causes act independently from each other. For example, the mechanism that inhibits
bronchitis from resulting in fatigue acts independently from the mechanism that inhibits
tuberculosis from resulting in fatigue. Mathematically, this assumption is as follows:

P (F = no|B = yes, T = yes, L = no) = (1− pB)(1− pT)

= (1− .6)(1− .7) = .12.

Note that in the previous equality we are conditioning on bronchitis and tuberculosis both
being present and lung cancer being absent. In this case, fatigue should occur unless the
causal effects of bronchitis and tuberculosis are both inhibited. Because we have assumed
these inhibitions act independently, the probability that both effects are inhibited is the
product of the probabilities that each is inhibited, which is (1− pB)(1− pT).

In this same way, if all three causes are present, we have

P (F = no|B = yes, T = yes, L = yes) = (1− pB)(1− pT)(1− pL)

= (1− .6)(1− .7)(1− .8) = .024.

Notice that when more causes are present, it is less probable that fatigue will be absent. This
is what we would expect. It is left as an exercise to compute the remaining six conditional
probabilities needed for node F in Figure 7.25. The reason that we only need to compute
eight conditional probabilities is because the variables are binary, and therefore we need
only compute the probabilities that F = no. The probabilities that F = yes are uniquely
determined by these. For example,

P (F = yes|B = yes, T = yes, L = yes) = 1− .024 = .976.

Although we illustrated the model for three causes, it clearly extends to an arbitrary
number of causes. We showed the assumptions in the model in italics when we introduced
them. Next, we summarize them and show the general formula.

The noisy OR-gate model makes the following three assumptions:

1. Causal inhibition: This assumption entails that there is some mechanism which
inhibits a cause from bringing about its effect, and the presence of the cause results
in the presence of the effect if and only if this mechanism is disabled (turned off).

i
i

i
i

i
i

i
i

172 Chapter 7 Uncertain Knowledge Representation

B

F

L

bronchitis lung cancer

fatigue

T

tuberculosis

p'
B

p'
T

p'
L

H

other

p'
H

(a)

B

F

L

bronchitis lung cancer

fatigue

T

tuberculosis

p
B

= .6 p
T

= .7 p
L

= .8

H

other

p
O

= .1

(b)

Figure 7.26 The probabilities in (a) are the causal strengths in the noisy OR-gate model.
The probabilities in (b) are the ones we ascertain.

2. Exception independence: This assumption entails that the mechanism which in-
hibits one cause is independent of the mechanism that inhibits other causes.

3. Accountability: This assumption entails that an effect can happen only if at least
one of its causes is present and is not being inhibited.

The general formula for the noisy OR-gate model is as follows: Suppose Y has
n causes X1, X2, . . . , Xn, all variables are binary, and we assume the noisy OR-gate model.
Let pi be the causal strength of Xi for Y . That is,

pi = P (Y = yes|X1 = no,X2 = no, . . .Xi = yes, . . .Xn = no).

Then if X is a set of nodes that are instantiated to yes,

P (Y = no|X) =
∏

i such that Xi∈X

(1− pi).

7.6.3 Leaky Noisy OR-Gate Model

Of the three assumptions in the noisy OR-gate model, the assumption of accountability
seems to be justified least often. For example, in the case of fatigue, there are certainly
other causes of fatigue such as listening to a lecture by Professor Neapolitan. So the model
in Figure 7.25 does not contain all causes of fatigue, and the assumption of accountability
is not justified. It seems in many, if not most, situations we would not be certain that we
have elaborated all known causes of an effect. Next, we show a version of the model that
does not assume accountability. The derivation of the formula for this model is not simple
and intuitive like the one for the basic noisy OR-gate model. So here we simply present the
model without deriving it. The formula is derived in [Neapolitan and Jiang, 2007].

7.6.3.1 Leaky Noisy OR-Gate Formula

The leaky noisy OR-gate model assumes that all causes that have not been articulated can
be grouped into one other cause H and that the articulated causes, along with H, satisfy the
three assumptions in the noisy OR-gate model. This is illustrated for the fatigue example
in Figure 7.26 (a). The probabilities in that figure are the causal strengths in the noisy
OR-gate model. For example,

p′B = P (F = yes|B = yes, T = no, L = no,H = no).

i
i

i
i

i
i

i
i

7.6 Obtaining the Probabilities 173

We could not ascertain these values because we do not know whether or not H is present.
The probabilities in Figure 7.26 (b) are the ones we could ascertain. For each of the three
articulated causes, the probability shown is the probability the effect is present given that
the remaining two articulated causes are not present. For example,

pB = P (F = yes|B = yes, T = no, L = no).

Note the difference in the probabilities p′B and pB . The latter one does not condition on
a value of H, while the former one does. The probability p0 is different from the other
probabilities. It is the probability that the effect will be present given none of the articulated
causes are present. That is,

p0 = P (F = yes|B = no, T = no, L = no).

Note again that we are not conditioning on a value of H.
Our goal is to develop conditional probability distributions for a Bayesian network con-

taining the nodes B, T , L, and F from the probabilities ascertained in Figure 7.26 (b). We
show an example that realizes this goal after presenting the formula necessary to the task.

The general formula for the leaky noisy OR-gate model is as follows (a derivation
appears in the next subsection): Suppose Y has n causes X1, X2, . . . , Xn, all variables are
binary, and we assume the leaky noisy OR-gate model. Let

pi = P (Y = yes|X1 = no,X2 = no, . . .Xi = yes, . . .Xn = no) (7.3)

p0 = P (Y = yes|X1 = no,X2 = no, . . .Xn = no). (7.4)

Then if X is a set of nodes that are instantiated to yes,

P (Y = no|X) = (1− p0)
∏

i such that Xi∈X

1− pi
1− p0

.

Example 7.17 Let’s compute the conditional probabilities for a Bayesian network contain-
ing the nodes B, T , L, and F from the probabilities ascertained in Figure 7.26 (b). We
have

P (F = no|B = no, T = no, L = no) = 1− p0

= 1− .1 = .9

P (F = no|B = no, T = no, L = yes) = (1− p0)
1− pL
1− p0

= 1− .8 = .2

P (F = no|B = no, T = yes, L = no) = (1− p0)
1− pT
1− p0

= 1− .7 = .3

P (F = no|B = no, T = yes, L = yes) = (1− p0)
1− pT
1− p0

1− pL
1− p0

=
(1− .7)(1− .8)

1− .1
= .067

It is left as an exercise to compute the remaining four conditional probabilities. �

i
i

i
i

i
i

i
i

174 Chapter 7 Uncertain Knowledge Representation

Figure 7.27 A small portion of the Bayesian network in Promedas. Courtesy of Bert
Kappen, Promedas project.

7.6.4 Further Models

A generalization of the noisy OR-gate model to the case of more than two values appears
in [Srinivas, 1993]. Diez and Druzdzel [2002] propose a general framework for canoni-
cal models, classifying them into three categories: deterministic, noisy, and leaky. They
then analyze the most common families of canonical models, namely the noisy OR/MAX,
the noisy AND/MIN, and the noisy XOR. Other models for succinctly representing the
conditional distributions use the sigmoid function [Neal, 1992] and the logit function
[McLachlan and Krishnan, 2008]. Another way to reduce the number of parameter estimates
is to use embedded Bayesian networks, which appears in [Heckerman and Meek, 1997].

7.7 Large-Scale Application: Promedas

Bayesian networks have been applied successfully in many domains. Section 9.8 discusses
many of these applications. Here we present perhaps the largest deployed Bayesian network,
namely Promedas.

Promedas (PRObabilistic MEdical Diagnostic Advisory System) is a diagnostic
decision support system used in health care. This computer program was devel-
oped by research groups of SNN Adaptive Intelligence, University of Nijmegen
and University Medical Center Utrecht. Promedas produces a differential diag-
nosis using a set of patient findings such as history data, physical findings and

i
i

i
i

i
i

i
i

7.7 Large-Scale Application: Promedas 175

Figure 7.28 The Bayesian network in Figure 7.27 with some of the nodes instantiated.
Courtesy of Bert Kappen, Promedas project.

laboratory data. The findings can be provided by an individual user or an Elec-
tronic Patient Records. For each diagnoses Promedas suggests additional tests
that can be performed to make the differential diagnosis more precise.

— http://www.promedas.nl/

A small part of the Bayesian network in Promedas appears in Figure 7.27. This figure
shows a subset of diagnoses and some of the conditions that affect their prior probability. In
addition, some tests are shown, whose probability is affected by these diagnoses. Connections
between these diagnoses and other tests are suppressed, as well as connections between
the shown tests and other diagnoses. Figure 7.28 shows as an application of this small
subnetwork to a particular patient. This patient is a sushi chef who recently visited Nigeria.
Both these facts affect his prevalence for lung flukes. His white blood cell count is above
normal as is his rectal temperature. In addition, he coughs and at times has some unspecific
pain. Based on these findings, Promedas computes the conditional probabilities for each of
the diagnoses.

Promedas has been used at Utrecht Academic Hospital in the Netherlands by about 100
doctors in the process of real decision making as an advisory tool.

http://www.promedas.nl/

i
i

i
i

i
i

i
i

176 Chapter 7 Uncertain Knowledge Representation

L S

C

L S

C

L S

C

(a) (b) (c)

Figure 7.29 The probability distribution discussed in Example 7.1 satisfies the Markov
condition with the DAGs in (a) and (b), but not with the DAG in (c).

EXERCISES

Section 7.2

Exercise 7.1 In Example 7.3 it was left as an exercise to show for all values of s, l, and c
that

P (s, l, c) = P (s|c)P (l|c)P (c).

Show this.

Exercise 7.2 It is important to realize that we cannot take just any DAG and expect a
joint distribution to equal the product of its conditional distributions in the DAG. This is
only true if the Markov condition is satisfied. You will illustrate that this is the case in this
exercise. Consider the joint probability distribution P in Example 7.1.

1. Show that probability distribution P satisfies the Markov condition with the DAG in
Figure 7.29 (a) and that P is equal to the product of its conditional distributions in
that DAG.

2. Show that probability distribution P satisfies the Markov condition with the DAG in
Figure 7.29 (b) and that P is equal to the product of its conditional distributions in
that DAG.

Show that probability distribution P does not satisfy the Markov condition with the DAG
in Figure 7.29 (c) and that P is not equal to the product of its conditional distributions in
that DAG.

i
i

i
i

i
i

i
i

Exercises 177

Section 7.3

Exercise 7.3 Professor Morris investigated gender bias in hiring in the following way. He
gave hiring personnel equal numbers of male and female résumés to review, and then he
investigated whether their evaluations were correlated with gender. When he submitted
a paper summarizing his results to a psychology journal, the reviewers rejected the paper
because they said this was an example of fat-hand manipulation. Investigate the concept of
fat-hand manipulation, and explain why the journal reviewers might have thought this.

Exercise 7.4 Consider the following piece of medical knowledge: tuberculosis and lung
cancer can each cause shortness of breath (dyspnea) and a positive chest X-ray. Bronchitis
is another cause of dyspnea. A recent visit to Asia could increase the probability of tuber-
culosis. Smoking can cause both lung cancer and bronchitis. Create a DAG representing
the causal relationships among these variables. Complete the construction of a Bayesian
network by determining values for the conditional probability distributions in this DAG,
either based on your own subjective judgment or from data.

Exercise 7.5 Explain why, if we reverse the edges in the DAG in Figure 7.11 to obtain the
DAG E → D → T , the new DAG also satisfies the Markov condition with the probability
distribution of the variables.

Section 7.4

Exercise 7.6 Compute P (x1|w1), assuming the Bayesian network in Figure 7.15.

Exercise 7.7 Compute P (t1|w1), assuming the Bayesian network in Figure 7.16.

Exercise 7.8 Compute P (x1|t2, w1), assuming the Bayesian network in Figure 7.16.

Exercise 7.9 Using Netica, develop the Bayesian network in Figure 7.3, and use that net-
work to determine the following conditional probabilities.

1. P (F = yes|Sex = male). Is this conditional probability different from P (F = yes)?
Explain why it is or is not.

2. P (F = yes|J = yes). Is this conditional probability different from P (F = yes)?
Explain why it is or is not.

3. P (F = yes|Sex = male, J = yes). Is this conditional probability different from
P (F = yes|J = yes)? Explain why it is or is not.

4. P (G = yes|F = yes). Is this conditional probability different from P (G = yes)?
Explain why it is or is not.

5. P (G = yes|J = yes). Is this conditional probability different from P (G = yes)?
Explain why it is or is not.

6. P (G = yes|J = yes, F = yes). Is this conditional probability different from P (G =
yes|F = yes)? Explain why it is or is not.

i
i

i
i

i
i

i
i

178 Chapter 7 Uncertain Knowledge Representation

X

T

WY

p
X

= .4 p
Y

= .8 p
W

= .2

Z

p
Z

= .7

Figure 7.30 The noisy OR-gate model is assumed.

X

T

WY

p
X

= .4 p
Y

= .8 p
W

= .2

Z

p
Z

= .7

H
p

0
= .05

Figure 7.31 The leaky noisy OR-gate model is assumed.

7. P (G = yes|A = < 30). Is this conditional probability different from P (G = yes)?
Explain why it is or is not.

8. P (G = yes|A = < 30, J = yes). Is this conditional probability different from P (G =
yes|J = yes)? Explain why it is or is not.

Section 7.5

Exercise 7.10 Using Netica, HUGIN, or some other Bayesian network software package,
implement the Bayesian network in Figure 7.23. Using that network, compute the condi-
tional probabilities in Exercise 7.9. Compare your answers to those obtained in Exercise
7.9.

Section 7.6

Exercise 7.11 It was left as an exercise to compute the remaining six conditional proba-
bilities needed for node F in Figure 7.25 using the noisy OR-gate model. Do this.

Exercise 7.12 Assume the noisy OR-gate model and the causal strengths are those shown
in Figure 7.30. Compute the probability T = yes for all combinations of values of the
parents.

Exercise 7.13 In Example 7.17 it was left as an exercise to compute the remaining four
conditional probabilities assuming the leaky noisy OR-gate model. Do this.

i
i

i
i

i
i

i
i

Exercises 179

Exercise 7.14 Assume the leaky noisy OR-gate model and the relevant probabilities are
those shown in Figure 7.31. Compute the probability T = yes for all combinations of values
of the parents. Compare the results to those obtained in Exercise 7.12.

i i

Chapter 8

Advanced Properties of
Bayesian Networks

Earthquake

Alarm

Lurker

Phone Call

If Mr. Holmes’ neighbor Dr. Watson called to report that he sees a lurker, Mr. Holmes would
reason that there probably is a lurker; therefore he might be burglarized, which means his
alarm might sound. However, if Mr. Holmes already knew there was a burglar as depicted
above, then the phone call could not make a burglar more likely, which means the likelihood
of the alarm sounding would not go up. This conditional independency, however, does not
follow from the statement of the Markov condition. That is, the Markov condition only says
that Lurker and Alarm are independent given Burglar ; it does not say that Phone Call and
Alarm are independent given Burglar. It turns out that certain conditional independencies
such as this one are entailed by the Markov condition. That is, if the Markov condition is
satisfied, they must hold. These entailed conditional independencies are discussed in Section
8.1.

Recall that we argued in Chapter 7 that if Mr. Holmes knew the alarm had sounded, then
knowledge of the earthquake should bring down the probability of having been burglarized.
This conditional dependency is not entailed by the Markov condition; that condition only

i
i

i
i

i
i

i
i

182 Chapter 8 Advanced Properties of Bayesian Networks

entails independencies. However, it is entailed by another condition called faithfulness. This
condition is introduced in Section 8.2.1. Finally, in Section 8.4 we discuss Markov blankets
and Markov boundaries, which are sets of variables that render a given variable conditionally
independent of all other variables.

8.1 Entailed Conditional Independencies

If (G, P) satisfies the Markov condition, then each node in G is conditionally independent
of the set of all its nondescendents given its parents. Do these conditional independencies
entail any other conditional independencies? That is, if (G, P) satisfies the Markov con-
dition, are there any other conditional independencies that P must satisfy other than the
one based on a node’s parents? The answer is yes. Such conditional independencies are
called entailed conditional independencies. Specifically, we say a DAG entails a condi-
tional independency if every probability distribution that satisfies the Markov condition
with the DAG must have the conditional independency. Before explicitly showing all the
entailed conditional independencies, we illustrate that one would expect these conditional
independencies.

8.1.1 Examples of Entailed Conditional Independencies

Suppose some distribution P satisfies the Markov condition with the DAG in Figure 8.1
(a). Then we know IP (C, {F,G}|, B), because B is the parent of C, and F and G are
nondescendents of C. Furthermore, we know IP (B,G|F) because F is the parent of B, and
G is a nondescendent of B. These are the only conditional independencies, according to
the statement of the Markov condition. However, can any other conditional independencies
be deduced from them? For example, can we conclude IP (C,G|F)? Let’s first give the
variables meaning and the DAG a causal interpretation to see if we would expect this
conditional independency.

Suppose we are investigating the way that professors obtain citations, and the variables
represent the following:

G: Graduate program quality
F : First job quality
B: Number of publications
C: Number of citations

Furthermore, suppose the DAG in Figure 8.1 (a) represents the causal relationships among
these variables, and there are no hidden common causes.1 Then it is reasonable to make
the causal Markov assumption, and we would feel that the probability distribution of the
variables satisfies the Markov condition with the DAG. Suppose we learn that Professor La
Budde attended a graduate program (G) of high quality. We would now expect that his
first job (F) may well be of high quality, which means that he should have a large number
of publications (B), which in turn implies he should have a large number of citations (C).
Therefore, we would not expect IP (C,G).

Suppose we next learn that Professor Pellegrini’s first job (F) was of high quality. That
is, we instantiate F to “high quality.” The cross through the node F in Figure 8.1 (b)
indicates it is instantiated. We would now expect his number of publications (B) to be
large and, in turn, his number of citations (C) to be large. If Professor Pellegrini then
tells us he attended a graduate program (G) of high quality, would we expect the number

1We make no claim that this model accurately represents the causal relationships among the variables.
See [Spirtes et al., 1993; 2000] for a detailed discussion of this problem.

i
i

i
i

i
i

i
i

8.1 Entailed Conditional Independencies 183

G

F

B

C

G

F

C

B

(a) (b)

Figure 8.1 A causal DAG is shown in (a). The variable F is instantiated in (b).

of citations to be even higher than we previously thought? It seems not. The graduate
program’s high quality implies that the number of citations is probably large, because it
implies that the first job is probably of high quality. Once we already know that the first job
is of high quality, the information concerning the graduate program should be irrelevant to
our beliefs concerning the number of citations. Therefore, we would expect C to not only be
conditionally independent of G given its parent B, but also its grandparent F . Either one
seems to block the dependency between G and C that exists through the chain [G,F,B,C].
So, we would expect IP (C,G|F).

It is straightforward to show that the Markov condition does indeed entail IP (C,G|F)
for the DAG G in Figure 8.1. We show this next. If (G, P) satisfies the Markov condition,

P (c|g, f) =
∑
b

P (c|b, g, f)P (b|g, f)

=
∑
b

P (c|b, f)P (b|f)

= P (c|f).

The first equality is due to the Law of Total Probability (in the background space that we
know the values of g and f), the second equality is due to the Markov condition, and the
last equality is again due to the Law of Total Probability.

If we have an arbitrarily long directed linked list of variables, and P satisfies the Markov
condition with that list, in the same way as just illustrated we can show that for any variable
in the list, the set of variables above it is conditionally independent of the set of variables be-
low it given that variable. That is, the variable blocks the dependency transmitted through
the chain.

Suppose now that P does not satisfy the Markov condition with the DAG in Figure 8.1
(a) because there is a common cause A of G and B. For the sake of illustration, let’s say
that A represents the following in the current example:

A: Ability

i
i

i
i

i
i

i
i

184 Chapter 8 Advanced Properties of Bayesian Networks

F

B

C

G

A

F

B

C

G

A

F

B

C

G

A

(b) (c) (d)

F

B

C

G

A

(a)

Figure 8.2 A causal DAG is shown in (a). The variable F is instantiated in (b). The
variables A and F are instantiated in (c). The variables B and G are instantiated in (d).

Further, suppose there are no other hidden common causes, so we would now expect P
to satisfy the Markov condition with the DAG in Figure 8.2 (a). Would we still expect
IP (C,G|F)? It seems not. For example, as before, suppose that we initially learn Professor
Pellegrini’s first job (F) was of high quality. This instantiation is shown in Figure 8.2 (b).
We learn next that his graduate program (G) was of high quality. Given the current model,
the fact that G is of high quality is indicative of his having high ability (A), which can
directly affect his publication rate (B) and therefore his citation rate (C). So, we now
would feel his citation rate (C) could be even higher than what we thought when we only
knew his first job (F) was of high quality. This means we would not feel IP (C,G|F), as
we did with the previous model. Suppose next that we know Professor Pellegrini’s first job
(F) was of high quality and that he has high ability (A). These instantiations appear in
Figure 8.2 (c). In this case, his attendance at a high-quality graduate program (G) can no
longer be indicative of his ability (A), and therefore it cannot affect our belief concerning
his citation rate (C) through the chain [G,A,B,C]. That is, this chain is blocked at A. So,
we would expect IP (C,G|{A,F}). Indeed, it is possible to prove that the Markov condition
does entail IP (C,G|{A,F}).

Finally, consider the conditional independency IP (F,A|G). This independency is ob-
tained directly by applying the Markov condition to the DAG in Figure 8.2 (a). So, we
will not offer an intuitive explanation for it. Rather, we discuss whether we would expect
the conditional independency to still exist if we also knew the state of B. Suppose we first
learn that Professor Georgakis has a high publication rate (B) and attended a high-quality
graduate program (G). These instantiations are shown in Figure 8.2 (d). We later learn
she also has high ability (A). In this case, her high ability (A) could explain her high
publication rate (B), thereby making it less probable she had a high-quality first job (F).
As mentioned in Section 7.1, psychologists call this discounting. So, the chain [A,B, F] is
opened by instantiating B, and we would not expect IP (F,A|{B,G}). Indeed, the Markov

i
i

i
i

i
i

i
i

8.1 Entailed Conditional Independencies 185

X B C D Y

K

J L

M

H

F I

Figure 8.3 This DAG illustrates the chains that can transmit a dependency between X
and Y .

condition does not entail IP (F,A|{B,G}). Note that the instantiation of C should also open
the chain [A,B, F]. That is, if we know the citation rate (C) is high, then it is probable the
publication rate (B) is high, and each of the causes of B can explain this high probability.
Indeed, the Markov condition does not entail IP (F,A|{C,G}), either.

8.1.2 d-Separation

Figure 8.3 shows the chains that can transmit a dependency between variables X and Y
in a Bayesian network. To discuss these dependencies intuitively, we give the edges in that
figure causal interpretations as follows:

1. The chain [X,B,C,D, Y] is a causal path from X to Y . In general, there is a depen-
dency between X and Y on this chain, and the instantiation of any intermediate cause
on the chain blocks the dependency.

2. The chain [X,F,H, I, Y] is a chain in which H is a common cause of X and Y . In
general, there is a dependency between any X and Y on this chain, and the instanti-
ation of the common cause H or either of the intermediate causes F and I blocks the
dependency.

3. The chain [X, J,K,L, Y] is a chain in which X and Y both cause K. There is no
dependency between X and Y on this chain. However, if we instantiate K or M , in
general a dependency would be created. We would then need to also instantiate J or
L to render X and Y independent.

To render X and Y conditionally independent, we need to instantiate at least one variable
on all the chains that transmit a dependency between X and Y . So, we would need to
instantiate at least one variable on the chain [X,B,C,D, Y], at least one variable on the
chain [X,F,H, I, Y], and, if K or M are instantiated, at least one other variable on the
chain [X, J,K,L, Y].

Now that we have discussed intuitively how dependencies can be transmitted and blocked
in a DAG, we show precisely what conditional independencies are entailed by the Markov

i
i

i
i

i
i

i
i

186 Chapter 8 Advanced Properties of Bayesian Networks

condition. To do this, we need the notion of d-separation, which we define shortly. First we
present some preliminary concepts. We say there is a head-to-head meeting at X on a
chain in a DAG G if the edges incident to X both have their arrows into X. For example, the
chain Y ←W → X ← V has a head-to-head meeting at X. We say there is a head-to-tail
meeting at X on a chain in a DAG G if precisely one of the edges incident to X has its
arrows into X. For example, the chain Y ← W ← X ← V has a head-to-tail meeting at
X. We say there is a tail-to-tail meeting at X on a chain in a DAG G if neither of the
edges incident to X has its arrows into X. For example, the chain Y ← W ← X → V has
a tail-to-tail meeting at X. We now have the following definition:

Definition 8.1 Suppose we have a DAG G = (V,E), a chain ρ in the DAG connecting two
nodes X and Y , and a subset of nodes W ⊆ V. We say that the chain ρ is blocked by W
if at least one of the following is true:

1. There is a node Z ∈W that has a head-to-tail meeting on ρ.

2. There is a node Z ∈W that has a tail-to-tail meeting on ρ.

3. There is a node Z, such that Z and all Z’s descendents are not in W , that has a
head-to-head meeting on ρ.�

Example 8.1 For the DAG in Figure 8.3, the following are some examples of chains that
are blocked and that are not blocked.

1. The chain [X,B,C,D, Y] is blocked by W = {C} because there is a head-to-tail
meeting at C.

2. The chain [X,B,C,D, Y] is blocked by W = {C,H} because there is a head-to-tail
meeting at C.

3. The chain [X,F,H, I, Y] is blocked by W = {C,H} because there is a tail-to-tail
meeting at H.

4. The chain [X, J,K,L, Y] is blocked by W = {C,H} because there is a head-to-head
meeting at K, and K and M are both not in W.

5. The chain [X, J,K,L, Y] is not blocked by W = {C,H,K} because there is a head-
to-head meeting at K, and K is not in W.

6. The chain [X, J,K,L, Y] is blocked by W = {C,H,K,L} because there is a head-to-
tail meeting at L. �

We can now define d-separation.

Definition 8.2 Suppose we have a DAG G = (V,E) and a subset of nodes W ⊆ V. Then
X and Y are d-separated by W in G if every chain between X and Y is blocked by W.
We write

IG(X,Y |W).�

Definition 8.3 Suppose we have a DAG G = (V,E) and three subsets of nodes X, Y ⊆ V,
and W. We say X and Y are d-separated by W in G if for every X ∈ X and Y ∈ Y, X and
Y are d-separated by W. We write

IG(X,Y|W).�

i
i

i
i

i
i

i
i

8.1 Entailed Conditional Independencies 187

As you might have already suspected, d-separation recognizes all the conditional inde-
pendencies entailed by the Markov condition. Specifically, we have the following theorem.

Theorem 8.1 Suppose we have a DAG G = (V,E) and three subsets of nodes X, Y, and
W ⊆ V. Then G entails the conditional independency IP (X,Y|W) if and only if IG(X,Y|W).

Proof. The proof can be found in [Neapolitan, 1989].

We stated the theorem for sets of variables, but clearly it holds for single variables. That
is, if X contains a single variable X and Y contains a single variable Y , then IP (X,Y|W) is
the same as IP (X,Y |W). We show examples of this simpler case next and investigate more
complex sets in the exercises.

Example 8.2 Owing to Theorem 8.1, the following are some conditional independencies
the Markov condition entails for the DAG in Figure 8.3.

Conditional Independency Reason Conditional Independency Is Entailed
IP (X,Y |{H,C}) [X,F,H, I, Y] is blocked at H

[X,B,C,D, Y] is blocked at C
[X, J,K,L, Y] is blocked at K

IP (X,Y |{F,D}) [X,F,H, I, Y] is blocked at F
[X,B,C,D, Y] is blocked at D
[X, J,K,L, Y] is blocked at K

IP (X,Y |{H,C,K,L}) [X,F,H, I, Y] is blocked at H
[X,B,C,D, Y] is blocked at C
[X, J,K,L, Y] is blocked at L

IP (X,Y |{H,C,M,L}) [X,F,H, I, Y] is blocked at H
[X,B,C,D, Y] is blocked at C
[X, J,K,L, Y] is blocked at L

In the third row it is necessary to include L to obtain the independency because there is a
head-to-head meeting at K on the chain [X,J,K,L, Y], and K ∈ {H,C,K,L}. Similarly,
in the fourth row, it is necessary to include L to obtain the independency because there
is a head-to-head meeting at K on the chain [X, J,K,L, Y], M is a descendent of K, and
M ∈ {H,C,M,L}.

�

Example 8.3 Owing to Theorem 8.1, the following are some conditional independencies
the Markov condition does not entail for the DAG in Figure 8.3.

Conditional Independency Reason Conditional Independency Is Not Entailed
IP (X,Y |H) [X,B,C,D, Y] is not blocked
IP (X,Y |D) [X,F,H, I, Y] is not blocked
IP (X,Y |{H,C,K}) [X, J,K,L, Y] is not blocked
IP (X,Y |{H,C,M}) [X, J,K,L, Y] is not blocked

�

Example 8.4 Owing to Theorem 8.1, the Markov condition entails the following condi-
tional independency for the DAG in Figure 8.4.

i
i

i
i

i
i

i
i

188 Chapter 8 Advanced Properties of Bayesian Networks

T

W

X

S

ZY

R

Figure 8.4 The Markov condition entails IP (W,X) for this DAG.

Conditional Independency Reason Conditional Independency Is Entailed
IP (W,X) [W,Y,X] is blocked at Y

[W,Y,R,Z,X] is blocked at R
[W,Y,R, S, Z,X] is blocked at S

Note that IP (W,X) is the same as IP (W,X|∅), where ∅ is the empty set, and Y , R, S,
and T are all not in ∅. �

8.2 Faithfulness

Recall that a DAG entails a conditional independency if every probability distribution, which
satisfies the Markov condition with the DAG, must have the conditional independency, and
Theorem 8.1 states that all and only d-separations are entailed conditional independen-
cies. Do not misinterpret this result. It does not say that if some particular probability
distribution P satisfies the Markov condition with a DAG G, then P cannot have condi-
tional independencies that G does not entail. Rather, it only says that P must have all the
conditional independencies that are entailed. We illustrate the difference next.

8.2.1 Unfaithful Probability Distributions

We show two examples of probability distributions that satisfy the Markov condition with
a DAG and contain a conditional independency that is not entailed by the DAG.

Example 8.5 A complete DAG is a DAG in which there is an edge between every pair
of nodes. Figure 8.5 shows a complete DAG G containing three nodes, C, L, and S. A
complete DAG entails no conditional independencies. So, every probability distribution P
of C, L, and S satisfies the Markov condition with the DAG in Figure 8.5.

Another way to look at this is to notice that the chain rule says that for every probability
distribution P of C, L, and S, for all values c, l, and s,

P (c, l, s) = P (s|l, c)P (l|c)P (c).

i
i

i
i

i
i

i
i

8.2 Faithfulness 189

L S

C

Figure 8.5 A complete DAG.

F D E

P(F = yes) = .5

P(F = no) = .5
P(D = low | F = yes) = .1

P(D = medium | F = yes) = .8

P(D = high | F = yes) = .1

P(D = low | F = no) = .1

P(D = medium | F = no) = .1

P(D = high | F = no) = .8

P(E = yes | D = low) = .8

P(E = no | D = low) = .2

P(E = yes | D = medium) = .1

P(E = no | D = medium) = .9

P(E = yes | D = high) = .1

P(E = no | D = high) = .9

Figure 8.6 For the distribution P in this Bayesian network we have IP (E,F), but the
Markov condition does not entail this conditional independency.

So, P is equal to the product of its conditional distributions for the DAG in Figure 8.5,
which means that, owing to Theorem 7.1, P satisfies the Markov condition with that DAG.

However, any probability distribution that has a conditional independency will have
a conditional independency that is not entailed by the complete DAG G. For example,
consider the joint probability distribution P of C, L, and S discussed in Example 7.1. We
showed that

IP (L, S|C).

Therefore, this distribution has a conditional independency that is not entailed by G. �

Example 8.6 Consider the Bayesian network in Figure 8.6. The only conditional indepen-
dency entailed by the Markov condition for the DAG G in that figure is IP (E,F |D). So,
Theorem 8.1 says that all probability distributions that satisfy the Markov condition with
G must have IP (E,F |D), which means that the probability distribution P in the Bayesian
network in Figure 8.6 must have IP (E,F |D). However, the theorem does not say that P
cannot have other independencies. Indeed, it is left as an exercise to show that we have
IP (E,F) for the distribution P in that Bayesian network. �

We purposefully assigned values to the conditional distributions in the network in Figure
8.6 to achieve IP (E,F). If we randomly assigned values, we would be almost certain to
obtain a probability distribution that does not have this independency. That is, Meek [1995]
proved that almost all assignments of values to the conditional distributions in a Bayesian
network will result in a probability distribution that only has conditional independencies
entailed by the Markov condition.

Could actual phenomena in nature result in a distribution like that in Figure 8.6? Al-
though we made up the numbers in the network in that figure, we patterned them after
something that actually occurred in nature. Let the variables in the figure represent the
following:

i
i

i
i

i
i

i
i

190 Chapter 8 Advanced Properties of Bayesian Networks

F D E

P(F = yes) = .6

P(F = no) = .4

P(D = low | F = yes) = .2

P(D = medium | F = yes) = .4

P(D = high | F = yes) = .4

P(D = low | F = no) = .3

P(D = medium | F = no) = .2

P(D = high | F = no) = .5

P(E = yes | D = low) = .7

P(E = no | D = low) = .3

P(E = yes | D = medium) = .2

P(E = no | D = medium) = .8

P(E = yes | D = high) = .1

P(E = no | D = high) = .9

Figure 8.7 The probability distribution in this Bayesian network is faithful to the DAG in
the network.

Variable What the Variable Represents
F Whether the subject takes finasteride
D Subject’s dihydro-testosterone level
E Whether the subject suffers from erectile dysfunction

As shown in Example 7.4, dihydro-testosterone seems to be the hormone necessary for
erectile function. Recall from Example 7.8 that Merck performed a study indicating that
finasteride has a positive causal effect on hair growth. Finasteride accomplishes this by
inhibiting the conversion of testosterone to dihydro-testosterone, the hormone responsible
for hair loss. Given this, Merck feared that dihydro-testosterone would cause erectile dys-
function. That is, ordinarily if X has a causal influence on Y and Y has a causal influence
on Z, then X has a causal influence on Z through Y . However, in a manipulation study,
Merck found that F does not appear to have a causal influence on E. That is, they learned
IP (E,F). The explanation for this is that finasteride does not lower dihydro-testosterone
levels beneath some threshold level, and that threshold level is all that is necessary for erec-
tile function. The numbers we assigned in the Bayesian network in Figure 8.6 reflect these
causal relationships. The value of F has no effect on whether D is low, and D must be low
to make the probability that E is yes high.

8.2.2 Faithfulness Condition

The probability distribution in the Bayesian network in Figure 8.6 is said to be unfaithful to
the DAG in that figure because it contains a conditional independency that is not entailed
by the Markov condition. We have the following definition:

Definition 8.4 Suppose we have a joint probability distribution P of the random variables
in some set V and a DAG G = (V,E). We say (G, P) satisfies the faithfulness condition
if all and only the conditional independencies in P are entailed by G. Furthermore, we say
that P and G are faithful to each other.�

Notice that the faithfulness condition includes the Markov condition because only con-
ditional independencies in P can be entailed by G. However, it requires more; that is, it
requires that all conditional independencies in P must be entailed by G. As noted previ-
ously, almost all assignments of values to the conditional distributions will result in a faithful
distribution. For example, it is left as an exercise to show that the probability distribution
P in the Bayesian network in Figure 8.7 is faithful to the DAG in that figure. We arbitrarily
assigned values to the conditional distributions in the figure. However, owing to the result

i
i

i
i

i
i

i
i

8.3 Markov Equivalence 191

X

Y Z

W

X

Y Z

W

X

Y Z

W

Figure 8.8 These DAGs are Markov equivalent, and there are no other DAGs Markov
equivalent to them.

in [Meek, 1995] that almost all assignments of values to the conditional distributions will
lead to a faithful distribution, we were willing to bet the farm that this assignment would,
too.

Is there some DAG faithful to the probability distribution in the Bayesian network in
Figure 8.6? The answer is no, but it is beyond the scope of this book to show this. See
[Neapolitan, 2004] for a proof of this fact. Intuitively, the DAG in Figure 8.6 represents the
causal relationships among the variables, which means we should not be able to find a DAG
that better represents the probability distribution.

8.3 Markov Equivalence

Many DAGs are equivalent in the sense that they have the same d-separations, which means
they entail the same conditional independencies. For example, each of the DAGs in Figure
8.8 contains the d-separations IG(Y,Z | X) and IG(X,W | {Y,Z}), and these are the only
d-separations each has. After stating a formal definition of this equivalence, we give a
theorem showing how it relates to probability distributions. Finally, we establish a criterion
for recognizing this equivalence.

Definition 8.5 Let G1 = (V,E1) and G2 = (V,E2) be two DAGs containing the same set
of variables V. Then G1 and G2 are called Markov equivalent if for every three mutually
disjoint subsets A,B,C ⊆ V, A and B are d-separated by C in G1 if and only if A and B are
d-separated by C in G2. That is,

IG1
(A,B|C)⇐⇒ IG2

(A,B|C).�

Although the previous definition has only to do with graph properties, its application is
in probability due to the following theorem:

Theorem 8.2 Two DAGs are Markov equivalent if and only if they entail the same condi-
tional independencies.

Proof. The proof follows immediately from Theorem 8.1.

Corollary 8.1 Let G1 = (V,E1) and G2 = (V,E2) be two DAGs containing the same set
of variables V. Then G1 and G2 are Markov equivalent if and only if for every probability
distribution P of V, (G1, P) satisfies the Markov condition if and only if (G2, P) satisfies
the Markov condition.

Proof. The proof is left as an exercise.

i
i

i
i

i
i

i
i

192 Chapter 8 Advanced Properties of Bayesian Networks

The theorem that follows enables us to identify Markov equivalence. This theorem
was first stated in [Pearl et al., 1989]. First we need this definition. We say there is an
uncoupled head-to-head meeting at X on a chain in a DAG G if there is a head-to-
head meeting Y → X ← Z at X and there is no edge between Y and Z.

Theorem 8.3 Two DAGs G1 and G2 are Markov equivalent if and only if they have the
same links (edges without regard for direction) and the same set of uncoupled head-to-head
meetings.

Proof. The proof can be found in [Neapolitan, 2004].

Example 8.7 The DAGs in Figures 8.9 (a) and 8.9 (b) are Markov equivalent because they
have the same links and the only uncoupled head-to-head meeting in both is X → Z ← Y .
The DAG in Figure 8.9 (c) is not Markov equivalent to the first two because it has the
link W − Y . The DAG in Figure 8.9 (d) is not Markov equivalent to the first two because,
although it has the same links, it does not have the uncoupled head-to-head meeting X →
Z ← Y . Clearly, the DAGs in Figures 8.9 (c) and 8.9 (d) are not Markov equivalent to each
other, either. �

Theorem 8.3 easily enables us to develop a polynomial-time algorithm for determining
whether two DAGs are Markov equivalent. The algorithm would simply check whether the
two DAGs have the same links and the same set of uncoupled head-to-head meetings. It is
left as an exercise to write such an algorithm.

Furthermore, Theorem 8.3 gives us a simple way to represent a Markov equivalence class
with a single graph. That is, we can represent a Markov equivalence class with a graph that
has the same links and the same uncoupled head-to-head meeting as the DAGs in the class.
Any assignment of directions to the undirected edges in this graph that does not create a
new uncoupled head-to-head meeting or a directed cycle yields a member of the equivalence
class.

Often there are edges other than uncoupled head-to-head meetings that must be ori-
ented the same in Markov equivalent DAGs. For example, if all DAGs in a given Markov
equivalence class have the edge X → Y , and the uncoupled meeting X → Y −Z is not head-
to-head, then all the DAGs in the equivalence class must have Y −Z oriented as Y → Z. So,
we define a DAG pattern for a Markov equivalence class to be the graph that has the same
links as the DAGs in the equivalence class and has oriented all and only the edges common
to all the DAGs in the equivalence class. The directed links in a DAG pattern are called
compelled edges. The DAG pattern in Figure 8.10 represents the Markov equivalence
class in Figure 8.8. The DAG pattern in Figure 8.11 (b) represents the Markov equivalence
class in Figure 8.11 (a). Notice that no DAG, which is Markov equivalent to each of the
DAGs in Figure 8.11 (a), can have W − U oriented as W ← U , because this would create
another uncoupled head-to-head meeting.

8.4 Markov Blankets and Boundaries

A Bayesian network can have a large number of nodes, and the conditional probability of a
given node can be affected by instantiating a distant node. However, it turns out that the
instantiation of a set of close nodes can shield a node from the effect of all the other nodes.
The next definition and theorem show this.

Definition 8.6 Let V be a set of random variables, P be their joint probability distribution,
and X ∈ V. Then a Markov blanket M of X is any set of variables such that X is

i
i

i
i

i
i

i
i

8.4 Markov Blankets and Boundaries 193

Z

R S

X Y

W

(a)

Z

R S

X Y

W

(b)

Z

R S

X Y

W

(c)

Z

R S

X Y

W

(d)

Figure 8.9 The DAGs in (a) and (b) are Markov equivalent. The DAGs in (c) and (d) are
not Markov equivalent to the first two DAGs or to each other.

i
i

i
i

i
i

i
i

194 Chapter 8 Advanced Properties of Bayesian Networks

X

Y Z

W

Figure 8.10 This DAG pattern represents the Markov equivalence class in Figure 8.8.

U

Z

YX

W

(b)

U

Z

YX

W

U

Z

YX

W

(a)

U

Z

YX

W

Figure 8.11 The DAG pattern in (b) represents the Markov equivalence class in (a).

i
i

i
i

i
i

i
i

8.4 Markov Blankets and Boundaries 195

T

S

Z W

X Y

Figure 8.12 If P satisfies the Markov condition with this DAG, then {T, Y, Z} is a Markov
blanket of X.

conditionally independent of all the other variables given M. That is,

IP (X,V − (M ∪ {X})|M).�

Theorem 8.4 Suppose (G, P) satisfies the Markov condition. Then for each variable X,
the set of all parents of X, children of X, and parents of children of X is a Markov blanket
of X.

Proof. Clearly the set of all parents of X, children of X, and parents of children of X d-
separates X from the set of all other nodes in V. The proof, therefore, follows from Theorem
8.1.

Example 8.8 Suppose (G, P) satisfies the Markov condition where G is the DAG in Figure
8.12. Then, due to Theorem 8.4, {T, Y, Z} is a Markov blanket of X. So, we have

IP (X, {S,W}|{T, Y, Z}).

�

Example 8.9 Suppose (G, P) satisfies the Markov condition where G is the DAG in Figure
8.12, and P has the following conditional independency:

IP (X, {S, T,W}|{Y,Z}).

Then the Markov blanket {T, Y, Z} is not minimal in the sense that its subset {Y,Z} is also
a Markov blanket of X. �

The last example motivates the definition that follows.

Definition 8.7 Let V be a set of random variables, P be their joint probability distribution,
and X ∈ V. Then a Markov boundary of X is any Markov blanket such that none of its
proper subsets is a Markov blanket of X.�

We have the following theorem.

Theorem 8.5 Suppose (G, P) satisfies the faithfulness condition. Then, for each variable
X, the set of all parents of X, children of X, and parents of children of X is the unique
Markov boundary of X.

Proof. The proof can be found in [Neapolitan, 2004].

i
i

i
i

i
i

i
i

196 Chapter 8 Advanced Properties of Bayesian Networks

Example 8.10 Suppose (G, P) satisfies the faithfulness condition where G is the DAG in
Figure 8.12. Then, due to Theorem 8.5, {T, Y, Z} is the unique Markov boundary of X. �

EXERCISES

Section 8.1

Exercise 8.1 Consider the DAG G in Figure 8.2 (a). Prove that the Markov condition
entails IP (C,G|{A,F}) for G.

Exercise 8.2 Suppose we add another variable R, an edge from F to R, and an edge from
R to C to the DAG G in Figure 8.2 (a). The variable R might represent the professor’s
initial reputation. State which of the following conditional independencies you would feel
are entailed by the Markov condition for G. For each that you feel is entailed, try to prove
it actually is.

1. IP (R,A)

2. IP (R,A|F)

3. IP (R,A|{F,C})

Exercise 8.3 Show that the Markov condition entails the following conditional indepen-
dencies for the DAG in Figure 8.4.

1. IP (X,R|{Y,Z})

2. IP (X,T |{Y, Z})

3. IP (W,T |R)

4. IP (Y,Z|X)

5. IP (W,S|{R,Z})

6. IP (W,S|{Y, Z})

7. IP (W,S|{Y,X})

Exercise 8.4 Show that the Markov condition does not entail the following conditional
independencies for the DAG in Figure 8.4.

1. IP (W,X|Y)

2. IP (W,T |Y)

Exercise 8.5 State which of the following conditional independencies are entailed by the
Markov condition for the DAG in Figure 8.4.

1. IP (W,S|{R,X})

2. IP ({W,X}, {S, T}|{R,Z})

i
i

i
i

i
i

i
i

Exercises 197

X Y Z

P(y
1
|x

1
) = 1 - (b + c)

P(y
2
|x

1
) = c

P(y
3
|x

1
) = b

P(y
1
|x

2
) = 1 - (b + d)

P(y
2
|x

2
) = d

P(y
3
|x

2
) = b

P(z
1
|y

1
) = e

P(z
2
|y

1
) = 1 - e

P(z
1
|y

2
) = e

P(z
2
|y

2
) = 1 - e

P(z
1
|y

3
) = f

P(z
2
|y

3
) = 1 - f

P(x
1
) = a

P(x
2
) = 1 - a

Figure 8.13 Any probability distribution P obtained by assigning values to the parameters
in this network is not faithful to the DAG in the network because we have IP (X,Z).

3. IP ({Y, Z}, T |{R,S})

4. IP ({X,S}, {W,T}|{R,Z})

5. IP ({X,S,Z}, {W,T}|R)

6. IP ({X,Z},W)

7. IP ({X,S},W)

Exercise 8.6 Does the Markov condition entail IP ({X,S},W |U) for any subset of variables
U in the DAG in Figure 8.4?

Section 8.2

Exercise 8.7 Show IP (F,E) for the distribution P in the Bayesian network in Figure 8.6.

Exercise 8.8 Consider the Bayesian network in Figure 8.13. Show that for all assignments
of values to a, b, c, d, e, and f that yield a probability distribution P , we have IP (X,Z).
Such probability distributions are not faithful to the DAG in that figure because X and Z
are not d-separated by the empty set. Note that the probability distribution in Figure 8.6
is a member of this family of distributions.

Exercise 8.9 Assign arbitrary values to the conditional distributions for the DAG in Figure
8.13, and see whether the resultant distribution is faithful to the DAG. Try to find an
unfaithful distribution besides ones in the family shown in that figure.

Exercise 8.10 Consider the Bayesian network in Figure 8.14. Show that for all assignments
of values to a, b, c, d, e, and f that yield a probability distribution P , we have IP (X,W).
Such probability distributions are not faithful to the DAG in that figure because X and W
are not d-separated by the empty set.

If the edges in the DAG in Figure 8.14 represent causal influences, X and W would be
independent if the causal effect of X on W through Y negated the causal effect of X on
W through Z. If X represents an individual’s age, W represents the individual’s typing
ability, Y represents the individual’s experience, and Z represents the individual’s manual
dexterity, do you feel X and W might be independent for this reason?

i
i

i
i

i
i

i
i

198 Chapter 8 Advanced Properties of Bayesian Networks

X

Z

W

Y

P(y
1
|x

1
) = b

P(y
1
|x

2
) = c

P(z
1
|x

1
) = c

P(z
1
|x

2
) = b

P(x
1
) = a

P(w
1
|y

1
,z

1
) = d

P(w
1
|y

1
,z

2
) = e

P(w
1
|y

2
,z

1
) = e

P(w
1
|y

2
,z

2
) = f

Figure 8.14 Any probability distribution P obtained by assigning values to the parameters
in this network is not faithful to the DAG in the network because we have IP (X,W).

Z

X Y

P(z
1
|x

1
,y

1
) = c

P(z
2
|x

1
,y

1
) = e

P(z
3
|x

1
,y

1
) = g

P(z
4
|x

1
,y

1
) = 1 - (c + e + g)

P(z
1
|x

2
,y

1
) = d

P(z
2
|x

2
,y

1
) = e

P(z
3
|x

2
,y

1
) = c + g - d

P(z
4
|x

2
,y

1
) = 1 - (c + e + g)

P(z
1
|x

1
,y

2
) = c

P(z
2
|x

1
,y

2
) = f

P(z
3
|x

1
,y

2
) = g

P(z
4
|x

1
,y

2
) = 1 - (c + f + g)

P(z
1
|x

2
,y

2
) = d

P(z
2
|x

2
,y

2
) = f

P(z
3
|x

2
,y

2
) = c + g - d

P(z
4
|x

2
,y

2
) = 1 - (c + f + g)

P(x
1
) = a

P(x
2
) = 1 - a

P(y
1
) = b

P(y
2
) = 1 - b

Figure 8.15 Any probability distribution P obtained by assigning values to the parameters
in this network is not faithful to the DAG in the network because we have IP (X,Y |Z).

Exercise 8.11 Consider the Bayesian network in Figure 8.15. Show that for all assignments
of values to a, b, c, d, e, f , and g that yield a probability distribution P , we have IP (X,Y |Z).
Such probability distributions are not faithful to the DAG in that figure because X and Y
are not d-separated by Z.

If the edges in the DAG in Figure 8.15 represent causal influences, X and Y would be
independent given Z, if no discounting occurred. Try to find some causal influences that
might behave like this.

Section 8.3

Exercise 8.12 Prove Corollary 8.1.

i
i

i
i

i
i

i
i

Exercises 199

Exercise 8.13 Write an algorithm that determines whether two DAGs are Markov equiv-
alent.

Section 8.4

Exercise 8.14 Apply Theorem 8.4 to find a Markov blanket for node Z in the DAG in
Figure 8.12.

Exercise 8.15 Apply Theorem 8.4 to find a Markov blanket for node Y in Figure 8.4.

i i

Chapter 9

Decision Analysis

If only the statement above were true. In reality, we make decisions in the face of un-
certainty, and we cannot know the outcome beforehand. The most we can do is carefully
analyze our decision alaternatives, and in some sense make the decision which we feel is
best. Towards that end, we can employ decision analysis, which is the discipline that
analytically endeavors to determine the decision alternative that is expected to yield the
outcome most advantageous to the decision maker.

In general, the information obtained by doing inference in a Bayesian network can be
used to arrive at a decision, even though the Bayesian network itself does not recommend
a decision. In this chapter, we extend the structure of a Bayesian network so that the
network actually does recommend a decision. Such a network is called an influence diagram,
and is the architecture used to perform complex decision analysis. Section 9.1 introduces
decision trees, which are mathematically equivalent to influence diagrams, but which have
difficulty representing large instances because their size grows exponentially with the number
of variables. In Section 9.2 we discuss influence diagrams, whose size only grows linearly

i
i

i
i

i
i

i
i

202 Chapter 9 Decision Analysis

with the number of variables. When using decision trees and influence diagrams to model a
monetary decision, the recommended decision is the one that maximizes the expected value
of the monetary result. Most individuals would not make a monetary decision by simply
maximizing expected values if the amounts of money involved were large compared to their
total wealth. That is, most individuals are risk averse. So, in general, we need to model
an individual’s attitude toward risk when using decision analysis to recommend a decision.
Section 9.3 shows how to do this using a personal utility function. Rather than assess a
utility function, a decision maker may prefer to analyze the risk directly. In Section 9.4 we
discuss risk profiles, which enable the decision maker to do this. Section 9.5 distinguishes
good decisions from good outcomes. Both influence diagrams and decision trees require
that we assess probabilities and outcomes. Sometimes assessing these values precisely can
be a difficult and laborious task, and further refinement of these values would not affect our
decision anyway. Section 9.6 shows how to measure the sensitivity of our decisions to the
values of the probabilities. Often, before making a decision we have access to information,
but at a cost. For example, before deciding to buy a stock, we may be able to purchase the
advice of an investment analyst. In Section 9.7 we illustrate how to compute the value of
information, which enables us to determine whether the information is worth the cost.

9.1 Decision Trees

After presenting some simple examples of decision trees, we discuss several issues regarding
their use. Then we provide more complex examples.

9.1.1 Simple Examples

We start with the following example:

Example 9.1 Suppose your favorite stock NASDIP is downgraded by a reputable analyst,
and it plummets from $40 to $10 per share. You feel this is a good buy, but there is a lot of
uncertainty involved. NASDIP’s quarterly earnings are about to be released, and you think
they will be good, which should positively influence its market value. However, you also
think there is a good chance the whole market will crash, which will negatively influence
NASDIP’s market value. In an attempt to quantify your uncertainty, you decide there is
a .25 probability the market will crash, in which case you feel NASDIP will go to $5 by
the end of the month. If the market does not crash, you feel that by the end of the month
NASDIP will be either at $10 or at $20 depending on the earnings report. You think it is
twice as likely it will be at $20 as at $10. So you assign a .5 probability to NASDIP being
at $20 and a .25 probability to it being at $10 at the end of the month. Your decision now
is whether to buy 100 shares of NASDIP for $1000 or to leave the $1000 in the bank where
it will earn .005 interest in the next month.

One way to make your decision is to determine the expected value of your investment
if you purchase NASDIP and compare that value to the amount of money you would have
if you put the money in the bank. Let X be a random variable, whose value is the worth of
your $1000 investment in one month if you purchase NASDIP. If NASDIP goes to $5, your
investment will be worth $500; if it stays at $10, your investment will be worth $1000; and
if it goes to $20, it will be worth $2000. Therefore,

E(X) = .25($500) + .25($1000) + .5($2000)

= $1375,

i
i

i
i

i
i

i
i

9.1 Decision Trees 203

D

NASDIP

$500

$1000

$2000

$1005

.25

.25

.5

Buy NASDIP

Leave $1000 in bank

$5

$10

$20

Figure 9.1 A decision tree representing the problem instance in Example 9.1.

where E denotes expected value. If you leave the money in the bank, your investment will
be worth

1.005($1000) = $1005.

If you are what is called an expected value maximizer, your decision would be to buy
NASDIP because that decision has the larger expected value. �

The problem instance in the previous example can be represented by a decision tree.
That tree is shown in Figure 9.1. A decision tree contains two kinds of nodes: chance
(or uncertainty) nodes representing random variables and decision nodes representing
decisions to be made. We depict these nodes as follows:

 - chance node

 - decision node

A decision represents a set of mutually exclusive and exhaustive actions the decision
maker can take. Each action is called an alternative in the decision. There is an edge
emanating from a decision node for each alternative in the decision. In Figure 9.1, we have
the decision node D with two alternatives: “Buy NASDIP” and “Leave $1000 in bank.”
There is one edge emanating from a chance node for each possible outcome (value) of the
random variable. We show the probability of the outcome on the edge and the utility of the
outcome to the right of the edge. The utility of the outcome is the value of the outcome
to the decision maker. When an amount of money is small relative to one’s total wealth,
we can usually take the utility of an outcome to be the amount of money realized given
the outcome. Currently, we make this assumption. Handling the case where we do not
make this assumption is discussed in Section 9.3. So, for example, if you buy 100 shares
of NASDIP, and NASDIP goes to $20, we assume that the utility of this outcome to you
is $2000. In Figure 9.1, we have the chance node NASDIP with three possible outcome
utilities, namely $500, $1000, and $2000. The expected utility EU of a chance node is
defined to be the expected value of the utilities associated with its outcomes. The expected
utility of a decision alternative is defined to be the expected utility of the chance node
encountered if that decision is made. If there is certainty when the alternative is taken, the

i
i

i
i

i
i

i
i

204 Chapter 9 Decision Analysis

D

NASDIP

$500

$1000

$2000

$1005

.25

.25

.5

Buy NASDIP

Leave $1000 in bank

$5

$10

$20

$1375

$1375

Figure 9.2 The solved decision tree given the decision tree in Figure 9.1.

expected utility is the value of that certain outcome. So

EU(Buy NASDIP) = EU(NASDIP) = .25($500) + .25($1000) + .5($2000)

= $1375

EU(Leave $1000 in bank) = $1005.

Finally, the expected utility of a decision node is defined to be the maximum of the expected
utilities of all its alternatives. So

EU(D) = max($1375, $1005) = $1375.

The alternative chosen is the one with the largest expected utility. The process of determin-
ing these expected utilities is called solving the decision tree. After solving it, we show
expected utilities above nodes and an arrow to the alternative chosen. The solved decision
tree, given the decision tree in Figure 9.1, is shown in Figure 9.2. The entire process of
identifying the components of a problem, structuring the problem as a decision tree (or
influence diagram), solving the decision tree (or influence diagram), performing sensitivity
analysis (discussed in Section 9.6), and possibly reiterating these steps is called decision
analysis.

Example 9.2 Suppose you are in the same situation as in Example 9.1, except, instead
of considering leaving your money in the bank, your other choice is to buy an option on
NASDIP. The option costs $1000, and it allows you to buy 500 shares of NASDIP at $11
per share in one month. So if NASDIP is at $5 or $0 per share in one month, you would not
exercise your option, and you would lose $1000. However, if NASDIP is at $20 per share in
one month, you would exercise your option, and your $1000 investment would be worth

500($20− $11) = $4500.

Figure 9.3 shows a decision tree representing this problem instance. From that tree, we have

EU(Buy option) = EU(NASDIP2) = .25($0) + .25($0) + .5($4500)

= $2250.

Recall that EU(Buy NASDIP) is only $1375. So our decision would be to buy the option.
It is left as an exercise to show the solved decision tree.

i
i

i
i

i
i

i
i

9.1 Decision Trees 205

D

NASDIP
1

$500

$1000

$2000

.25

.25

.5

Buy NASDIP

Buy option

$5

$10

$20

NASDIP
2

$0

$0

$4500

.25

.25

.5

$5

$10

$20

Figure 9.3 The decision tree modeling the investment decision concerning NASDIP when
the other choice is to buy an option on NASDIP.

Notice that the decision tree in Figure 9.3 is symmetrical, whereas the one in Figure
9.2 is not. The reason is that we encounter the same uncertain event regardless of which
decision is made. Only the utilities of the outcomes are different. �

Before proceeding, we address a concern you may have. That is, you may be wondering
how an individual could arrive at the probabilities of .25, .5, and .25 in Example 9.1. These
probabilities are often not relative frequencies; rather, they are subjective probabilities that
represent an individual’s reasonable numeric beliefs. The individual arrives at them by a
careful analysis of the situation. Methods for assessing subjective beliefs were discussed
briefly in Section 6.3.2 and are discussed in more detail in [Neapolitan, 1996]. Even so,
you may argue that the individual surely must believe there are many more possible future
values for a share of NASDIP than three. How can the individual claim the only possible
values are $5, $10, and $20? You are correct. However, if further refinement of one’s beliefs
would not affect the decision, then it is not necessary to do so. So if the decision maker feels
that a model containing more values would not result in a different decision, it is sufficient
to use the model containing only the values $5, $10, and $20.

9.1.2 Solving More Complex Decision Trees

The general algorithm for solving decision trees is quite simple. There is a time ordering
from left to right in a decision tree. That is, any node to the right of another node occurs
after that node in time. The tree is solved as follows:

Starting at the right,

proceed to the left

passing expected utilities to chance nodes;

passing maximums to decision nodes;

until the root is reached.

We now present more complex examples of modeling with decision trees.

i
i

i
i

i
i

i
i

206 Chapter 9 Decision Analysis

D

ICK
1

$50,000

$200,000

.2

.8
Buy ICK

Buy

option

$5

$20

$20

DOW
1

ICK
2

$50,000

$200,000

.5

.5

$5

ICK
3

$0

$250,000

.3

.7

$5

$20

$20

ICK
4

$0

$250,000

.6

.4

$5

DOW
2

11,000

.6

10,000

.4

11,000

.6

10,000

.4

Figure 9.4 A decision tree representing Nancy’s decision whether to buy ICK or an option
on ICK.

Example 9.3 Suppose Nancy is a high roller, and she is considering buying 10,000 shares
of ICK for $10 a share. This number of shares is so high that if she purchases them, it could
affect market activity and bring up the price of ICK. She also believes the overall value of
the Dow Jones Industrial Average will affect the price of ICK. She feels that in one month
the Dow will be at either 10,000 or 11,000, and ICK will be at either $5 or $20 per share.
Her other choice is to buy an option on ICK for $100,000. The option will allow her to buy
50,000 shares of ICK for $15 a share in one month. To analyze this problem instance, she
constructs the following probabilities:

P (ICK = $5|Decision = Buy ICK, Dow = 11,000) = .2

P (ICK = $5|Decision = Buy ICK, Dow = 10,000) = .5

P (ICK = $5|Decision = Buy option, Dow = 11,000) = .3

P (ICK = $5|Decision = Buy option, Dow = 10,000) = .6.

Furthermore, she assigns

P (Dow = 11,000) = .6.

i
i

i
i

i
i

i
i

9.1 Decision Trees 207

D

ICK
1

$50,000

$200,000

.2

.8
Buy ICK

Buy

option

$5

$20

$20

DOW
1

ICK
2

$50,000

$200,000

.5

.5

$5

ICK
3

$0

$250,000

.3

.7

$5

$20

$20

ICK
4

$0

$250,000

.6

.4

$5

DOW
2

11,000

.6

10,000

.4

11,000

.6

10,000

.4

$170,000

$125,000

$152,000

$175,000

$100,000

$145,000

$152,000

Figure 9.5 The solved decision tree given the decision tree in Figure 9.4.

This problem instance is represented by the decision tree in Figure 9.4. Next we solve the
tree:

EU(ICK1) = (.2)($50,000) + (.8)($200,000) = $170,000

EU(ICK2) = (.5)($50,000) + (.5)($200,000) = $125,000

EU(Buy ICK) = EU(DOW1) = (.6)($170,000) + (.4)($125,000) = $152,000

EU(ICK3) = (.3)($0) + (.7)($250,000) = $175,000

EU(ICK4) = (.6)($0) + (.4)($250,000) = $100,000

EU(Buy option) = EU(DOW2) = (.6)($175,000) + (.4)($100,000) = $145,000

EU(D) = max($152,000, $145,000) = $152,000.

The solved decision tree is shown in Figure 9.5. The decision is to buy ICK. �

i
i

i
i

i
i

i
i

208 Chapter 9 Decision Analysis

D
1

Tran
1

$11,000

$8000

$10,000

.571429

.428571

Buy

Spiffycar

Do not buy

good

bad

D
2

Tran
2

$11,000

$8000

$10,000

.965517

.034483

Buy

Spiffycar

Do not buy

good

bad

Test

positive

negative

.58

Figure 9.6 The decision tree representing the problem instance in Example 9.4.

The previous example illustrates a problem with decision trees. That is, the represen-
tation of a problem instance by a decision tree grows exponentially with the size of the
instance. Notice that the instance in Example 9.3 only has one more element in it than
the instance in Example 9.2; that is, it includes that uncertainty about the Dow. Yet its
representation is twice as large. So it is quite difficult to represent a large instance with
a decision tree. We will see in the next section that influence diagrams do not have this
problem. Before that, we show more examples.

Example 9.4 Sam has the opportunity to buy a 1996 Spiffycar automobile for $10,000,
and he has a prospect who would be willing to pay $11,000 for the auto if it is in excellent
mechanical shape. Sam determines that all mechanical parts except for the transmission
are in excellent shape. If the transmission is bad, it will cost Sam $3000 to repair it, and
he would have to repair it before the prospect would buy it. So he would only end up
with $8000 if he bought the vehicle and its transmission was bad. He cannot determine
the state of the transmission himself. However, he has a friend who can run a test on the
transmission. The test is not absolutely accurate. Rather, 30% of the time it judges a good
transmission to be bad and 10% of the time it judges a bad transmission to be good. To
represent this relationship between the transmission and the test, we define the following
random variables:

Variable Value When the Variable Takes This Value
Test positive Test judges the transmission to be bad.

negative Test judges the transmission to be good.
Tran good Transmission is good.

bad Transmission is bad.

The previous discussion implies that we have these conditional probabilities:

P (Test = positive|Tran = good) = .3

P (Test = positive|Tran = bad) = .9.

i
i

i
i

i
i

i
i

9.1 Decision Trees 209

D
1

Tran
1

$11,000

$8000

$10,000

.571429

.428571

Buy

Spiffycar

Do not buy

good

bad

D
2

Tran
2

$11,000

$8000

$10,000

.965517

.034483

Buy

Spiffycar

Do not buy

good

bad

Test

positive

negative

.42

.58

$9722

$10,897

$10,000

$10,897

Figure 9.7 The solved decision tree given the decision tree in Figure 9.6.

Furthermore, Sam knows that 20% of the 1996 Spiffycars have bad transmissions. That is,

P (Tran = good) = .8.

Sam is going to have his friend run the test for free, and then he will decide whether to buy
the car.

This problem instance is represented in the decision tree in Figure 9.6. Notice first that,
if he does not buy the vehicle, the outcome is simply $10,000. This is because the point in the
future is so near that we can neglect interest as negligible. Note further that the probabilities
in that tree are not the ones stated in the example. They must be computed from the stated
probabilities. We do that next. The probability on the upper edge emanating from the Test
node is the prior probability the test is positive. It is computed as follows (note that we use
our abbreviated notation):

P (positive) = P (positive|good)P (good) + P (positive|bad)P (bad)

= (.3)(.8) + (.9)(.2) = .42.

The probability on the upper edge emanating from the Tran1 node is the probability the
transmission is good given the test is positive. We compute it using Bayes’ theorem as
follows:

P (good|positive) =
P (positive|good)P (good)

P (positive)

=
(.3)(.8)

.42
= .571429.

It is left as an exercise to determine the remaining probabilities in the tree. Next, we solve
the tree:

EU(Tran1) = (.571429)($11,000) + (.428571)($8000) = $9714

EU(D1) = max($9714, $10,000) = $10,000

i
i

i
i

i
i

i
i

210 Chapter 9 Decision Analysis

D
1

Tran
1

$10,800

$7800

$9800

.571429

.428571

Buy

Spiffycar

Do not buy

good

bad

D
2

Tran
2

$10,800

$7800

$9800

.965517

.034483

Buy

Spiffycar

Do not buy

good

bad

Test

positive

negative

.42

.58

D
3

Tran
3

$11,000

$8000

.8

.2

good

bad

Run test

$10,000

Buy Spiffycar

Do not buy

Figure 9.8 The decision tree representing the problem instance in Example 9.5.

EU(Tran2) = (.965517)($11,000) + (.034483)($8000) = $10,897

EU(D2) = max($10,897, $10,000) = $10,897.

We need not compute the expected value of the Test node because there are no decisions
to the left of it. The solved decision tree is shown in Figure 9.7. The decision is to not buy
the vehicle if the test is positive and to buy it if the test is negative. �

The previous example illustrates another problem with decision trees. That is, the
probabilities needed in a decision tree are not always the ones that are readily available to
us. So we must compute them using the Law of Total Probability and Bayes’ theorem. We
will see that influence diagrams do not have this problem either. More examples follow.

Example 9.5 Suppose Sam is in the same situation as in Example 9.4, except that the test
is not free. Rather, it costs $200. So Sam must decide whether to run the test, buy the car
without running the test, or keep his $10,000. The decision tree representing this problem
instance is shown in Figure 9.8. Notice that the outcomes when the test is run are all $200
less than their respective outcomes in Example 9.4. This is because it costs $200 to run the
test. Note further that, if the vehicle is purchased without running the test, the probability
of the transmission being good is simply its prior probability of .8. This is because no test
was run. So our only information about the transmission is our prior information. Next, we
solve the decision tree. It is left as an exercise to show that

EU(D1) = $9800

i
i

i
i

i
i

i
i

9.1 Decision Trees 211

D

R

 0 suit ruined

1 suit not ruined

.4

.6

Do not

take umbrella

Take umbrella

rain

no rain

 suit not ruined,

 inconveniece
.8

Figure 9.9 The decision tree representing the problem instance in Example 9.6.

EU(D2) = $10,697.

Therefore,
EU(Test) = (.42)($9800) + (.58)($10,697) = $10,320.

Furthermore,
EU(Tran3) = (.8)($11,000) + (.2)($8000) = $10,400.

Finally,
EU(D3) = max($10,320, $10,400, $10,000) = $10,400.

So Sam’s decision is to buy the vehicle without running the test. It is left as an exercise to
show the solved decision tree. �

The next two examples illustrate cases in which the outcomes are not numeric.

Example 9.6 Suppose Leonardo has just bought a new suit, he is about to leave for work,
and it looks like it might rain. Leonardo has a long walk from the train to his office. So he
knows if it rains and he does not have his umbrella, his suit will be ruined. His umbrella will
definitely protect his suit from the rain. However, he hates the inconvenience of lugging the
umbrella around all day. Given that he feels there is a .4 probability it will rain, should he
bring his umbrella? A decision tree representing this problem instance is shown in Figure
9.9.

Notice that the outcomes have numeric values, which are needed to solve the problem.
We assigned those values as follows. Clearly, the ordering of the outcomes from worst to
best is as follows:

1. suit ruined

2. suit not ruined, inconvenience

3. suit not ruined.

We assign a utility of 0 to the worst outcome and a utility of 1 to the best outcome. So

U(suit ruined) = 0

U(suit not ruined) = 1.

Then we consider lotteries (chance nodes) Lp in which Leonardo gets the outcome “suit not
ruined” with probability p and outcome “suit ruined” with probability 1 − p. The utility

i
i

i
i

i
i

i
i

212 Chapter 9 Decision Analysis

of “suit not ruined, inconvenience” is defined to be the expected utility of the lottery Lp
for which Leonardo would be indifferent between lottery Lp and being assured of “suit not
ruined, inconvenience.” We then have

U(suit not ruined, inconvenience)

≡ EU(Lp)

= pU(suit not ruined) + (1− p)U(suit ruined)

= p(1) + (1− p)0 = p.

Let’s say Leonardo decides p = .8. Then

U(suit not ruined, inconvenience) = .8.

We now solve the decision in Figure 9.9.

EU(R) = (.4)(0) + (.6)(1) = .6

EU(D) = max(.6, .8) = .8.

So the decision is to take the umbrella. �

The method used to obtain numeric values in the previous example easily extends to the
case where there are more than three outcomes. For example, suppose there was a fourth
outcome “suit goes to cleaners” in between “suit not ruined, inconvenience” and “suit not
ruined” in the preference ordering. We consider lotteries Lq in which Leonardo gets outcome
“suit not ruined” with probability q and outcome “suit not ruined, inconvenience” with
probability 1− q. The utility of “suit goes to cleaners” is defined to be the expected utility
of the lottery Lq for which Leonardo would be indifferent between lottery Lq and being
assured of “suit goes to cleaners.” We then have

U(suit goes to cleaners)

≡ EU(Lq)

= qU(suit not ruined) + (1− q)U(suit not ruined, inconvenience)

= q(1) + (1− q)(.8) = .8 + .2q.

Let’s say Leonardo decides q = .6. Then

U(suit goes to cleaners) = .8 + (.2)(.6) = .92.

Next, we give an example from the medical domain.1

Example 9.7 Amit, a 15-year-old high school student, has been definitively diagnosed with
streptococcal infection, and he is considering having a treatment that is known to reduce the
number of days with a sore throat from 4 to 3. He learns, however, that the treatment has
a .000003 probability of causing death due to anaphylaxis. Should he have the treatment?

You may argue that, if he may die from the treatment, he certainly should not have it.
However, the probability of dying is extremely small, and we daily accept small risks of dying
in order to obtain something of value to us. For example, many people take a small risk
of dying in a car accident in order to arrive at work. We see then that we cannot discount
the treatment based solely on that risk. So what should Amit do? Next, we apply decision

1This example is based on an example in [Nease and Owens, 1997]. Although the information is not
fictitious, some of it is controversial.

i
i

i
i

i
i

i
i

9.1 Decision Trees 213

D

A

3 sore

throat days

dead

4 sore

throat days

.999997

.000003

Treat

Do not treat

no death

anaphylaxis

death

Figure 9.10 A decision tree representing Amit’s decision concerning being treated for
streptococcal infection.

analysis to recommend a decision to him. Figure 9.10 shows a decision tree representing
Amit’s decision. To solve this problem instance, we need to quantify the outcomes in that
tree. We can do this using quality adjusted life expectancies (QALE). We ask Amit
to determine what one year of life with a sore throat is worth relative to one year of life
without one. We will call such years “well years.” Let’s say he says it is worth .9 well years.
That is, for Amit

1 year with sore throat is equivalent to .9 well years.

We then assume a constant proportional trade-off. That is, we assume the time trade-
off associated with having a sore throat is independent of the time spent with one. The
validity of this assumption and alternative models are discussed in [Nease and Owens, 1997].
Given this assumption, for Amit

t years with sore throat is equivalent to .9t well years.

The value .9 is called the time-trade-off quality adjustment for a sore throat. Another
way to look at it is that Amit would give up .1 years of life to avoid having a sore throat
for .9 years of life. Now, if we let t be the amount of time Amit will have a sore throat due
to this infection, and l be Amit’s remaining life expectancy, we define his quality QALE as
follows:

QALE(l, t) = (l − t) + .9t.

From life expectancy charts, we determine Amit’s remaining life expectancy is 60 years.
Converting days to years, we have the following:

3 days = .008219 years

4 days = .010959 years.

Therefore, Amit’s QALEs are as follows:

QALE(60 years, 3 sore throat days) = 60− .008219 + .9(.008219)

= 59.999178

QALE(60 years, 4 sore throat days) = 60− .010959 + .9(.010959)

= 59.998904.

i
i

i
i

i
i

i
i

214 Chapter 9 Decision Analysis

D

A

3 sore

 throat days

59.999178 yrs

dead

0 yrs

.999997

.000003

Treat

Do not treat

no death

anaphylaxis

death

4 sore

throat days

59.998904 yrs

Figure 9.11 The decision tree in Figure 9.10 with the actual outcomes augmented by
QALEs.

Figure 9.11 shows the decision tree in Figure 9.10 with the actual outcomes augmented with
QALEs. Next, we solve that tree.

EU(Treat) = EU(A) = (.999993)(59.999178) + (.000003)(0)

= 59.998758

EU(Do not treat) = 59.998904

EU(D) = max(59.998758, 59.998904) = 59.998904.

So the decision is to not treat, but just barely. �

Example 9.8 This example is an elaboration of the previous one. Actually, Streptococcus
infection can lead to rheumatic heart disease (RHD), which is less probable if the patient
is treated. Specifically, if we treat a patient with Streptococcus infection, the probability
of rheumatic heart disease is .000013, while if we do not treat the patient, the probabil-
ity is .000063. Rheumatic heart disease would be for life. So Amit needs to take all this
into account. First, he must determine time trade-off quality adjustments both for hav-
ing rheumatic heart disease alone and for having it along with a sore throat. Suppose he
determines the following:

1 year with RHD is equivalent to .15 well years.

1 year with sore throat and RHD is equivalent to .1 well years.

We then have

QALE(60 years, RHD, 3 sore throat days) = .15

(
60− 3

365

)
+ .1

(
3

365

)
= 8.999589

QALE(60 years, RHD, 4 sore throat days) = .15

(
60− 4

365

)
+ .1

(
4

365

)
= 8.999452.

i
i

i
i

i
i

i
i

9.1 Decision Trees 215

D

RHD
1

3 sore throat

days, RHD

8.999589 yrs

dead

0 yrs

.000013

.999987

no death

anaphylaxis death

yes

no
Treat

Do not

treat

A

.000003

.999997 3 sore throat

days, no RHD

59.999178 yrs

RHD
2

4 sore throat

days, RHD

8.999452 yrs
.000063

.999937

yes

no

4 sore throat

days, no RHD

59.998904 yrs

Figure 9.12 A decision tree modeling Amit’s decision concerning being treated for strep-
tococcal infection when rheumatic heart disease is considered.

We have already computed QALEs for 3 or 4 days with only a sore throat in the previous
example. Figure 9.12 shows the resultant decision tree. We solve that decision tree next.

EU(RHD1) = (.000013)(8.999569) + (.999987)(59.999178)

= 59.998515

EU(Treat) = EU(A) = (.999997)(59.998515) + (.000003)(0)

= 59.998335

EU(Do not treat) = EU(RHD2)

= (.000063)(8.999452) + (.999937)(59.998904)

= 59.995691

EU(D) = max(59.998335, 59.995691) = 59.998335.

So now the decision is to treat, but again just barely. �

You may argue that, in the previous two examples, the difference in the expected utilities
is negligible because the number of significant digits needed to express it is far more than the
number of significant digits in Amit’s assessments. This argument is reasonable. However,
the utilities of the decisions are so close because the probabilities of both anaphylaxis death
and rheumatic heart disease are so small. In general, this situation is not always the case.
It is left as an exercise to rework the previous example with the probability of rheumatic
heart disease being .13 instead of .000063.

Another consideration in medical decision making is the financial cost of the treatments.
In this case, the value of an outcome is a function of both the QALE and the financial cost
associated with the outcome.

i
i

i
i

i
i

i
i

216 Chapter 9 Decision Analysis

9.2 Influence Diagrams

In Section 9.1, we noted two difficulties with decision trees. First, the representation of a
problem instance by a decision tree grows exponentially with the size of the instance. Second,
the probabilities needed in a decision tree are not always the ones that are readily available
to us. Next, we present an alternative representation of decision problem instances, namely
influence diagrams, which do not have either of these difficulties. First, we only discuss
representing problem instances with influence diagrams. Then in Section 9.2.2 we discuss
solving influence diagrams.

9.2.1 Representing Decision Problems with Influence Diagrams

An influence diagram contains three kinds of nodes: chance (or uncertainty) nodes
representing random variables; decision nodes representing decisions to be made; and
one utility node, which is a random variable whose possible values are the utilities of the
outcomes. We depict these nodes as follows:

 - chance node

 - decision node

 - utility node

The edges in an influence diagram have the following meaning:

 Value of the node is probabilistically

 dependent on the value of the parent.

Value of the parent is known at the time the decision

 is made; hence the edge represents sequence.

 Value of the node is deterministically

 dependent on the value of the parent.

The chance nodes in an influence diagram satisfy the Markov condition with the prob-
ability distribution. That is, each chance node X is conditionally independent of the set of
all its nondescendents given the set of all its parents. So an influence diagram is actually
a Bayesian network augmented with decision nodes and a utility node. There must be an
ordering of the decision nodes in an influence diagram based on the order in which the
decisions are made. The order is specified using the edges between the decision nodes. For
example, if we have the order

D1, D2, D3,

then there are edges from D1 to D2 and D3 and an edge from D2 to D3.
To illustrate influence diagrams, we next represent the problem instances, in the examples

in the section on decision trees by influence diagrams.

Example 9.9 Recall Example 9.1 in which you felt there was a .25 probability NASDIP
will be at $5 at month’s end, a .5 probability it will be at $20, and a .25 probability it will

i
i

i
i

i
i

i
i

9.2 Influence Diagrams 217

D

NASDIP

U

P(NASDIP = $5) = .25

P(NASDIP = $10) = .25

P(NASDIP = $20) = .5

d1 = Buy NASDIP

d2 = Leave $1000 in bank
U(d1,$5) = $500

U(d1, $10) = $1000

U(d1, $20) = $2000

U(d2,n) = $1005

Figure 9.13 An influence diagram modeling your decision whether to buy NASDIP.

be at $10. Your decision is whether to buy 100 shares of NASDIP for $1000 or to leave the
$1000 in the bank where it will earn .005 interest. Figure 9.13 shows an influence diagram
representing this problem instance. Notice a few things about that diagram. There is no
edge from D to NASDIP because your decision as to whether to buy NASDIP has no effect
on its performance. (We assume your 100 shares are not enough to affect market activity.)
There is no edge from NASDIP to D because at the time you make your decision, you do
not know NASDIP’s value in one month. There are edges from both NASDIP and D to
U because your utility depends both on whether NASDIP goes up and whether you buy
it. Notice that if you do not buy it, the utility is the same regardless of what happens to
NASDIP. This is why we write U(d2, n) = $1005. The variable n represents any possible
value of NASDIP. �

Example 9.10 Recall Example 9.2, which concerned the same situation as in Example 9.1,
except that your choices were either to buy NASDIP or to buy an option on NASDIP. Recall
further that if NASDIP was at $5 or $0 per share in one month, you would not exercise
your option and you would lose your $1000; and if NASDIP was at $20 per share in one
month, you would exercise your option and your $1000 investment would be worth $4500.
Figure 9.14 shows an influence diagram representing this problem instance. Recall that when
we represented this instance with a decision tree (Figure 9.3), that tree was symmetrical
because we encountered the same uncertain event regardless of which decision was made.
This symmetry manifests itself in the influence diagram in that the value of the utility node
U depends on the value of the chance node NASDIP regardless of the value of the decision
node D. �

Example 9.11 Recall Example 9.3 in which Nancy was considering either buying 10,000
shares of ICK for $10 a share or an option on ICK for $100,000 that would allow her to buy
50,000 shares of ICK for $15 a share in one month. Recall further that she believed that in
one month the Dow would be either at 10,000 or at 11,000, and ICK would be either at $5
or at $20 per share. Finally, recall that she assigned the following probabilities:

P (ICK = $5|Dow = 11,000,Decision = Buy ICK) = .2

P (ICK = $5|Dow = 11,000,Decision = Buy option) = .3

i
i

i
i

i
i

i
i

218 Chapter 9 Decision Analysis

D

NASDIP

U

P(NASDIP = $5) = .25

P(NASDIP = $10) = .25

P(NASDIP = $20) = .5

d1 = Buy NASDIP

d2 = Buy option
U(d1,$5) = $500

U(d1, $10) = $1000

U(d1, $20) = $2000

U(d2,$5) = $0

U(d2,$10) = $0

U(d2,$20) = $4500

Figure 9.14 An influence diagram modeling your decision whether to buy NASDIP when
the other choice is to buy an option.

P (ICK = $5|Dow = 10,000,Decision = buy ICK) = .5

P (ICK = $5|Dow = 10,000,Decision = Buy option) = .6

P (Dow = $11,000) = .6.

Figure 9.15 shows an influence diagram representing this problem instance. Notice that the
value of ICK depends not only on the value of the Dow, but also on the decision D. This
is because Nancy’s purchase can affect market activity. Note further that this instance has
one more component than the instance in Example 9.10, and we needed to add only one
more node to represent it with an influence diagram. So the representation grew linearly
with the size of the instance. By contrast, recall that when we represented the instances
with decision trees, the representation grew exponentially. �

Example 9.12 Recall Example 9.4 in which Sam had the opportunity to buy a 1996 Spiffy-
car automobile for $10,000, and he had a prospect who would be willing to pay $11,000 for
the auto if it were in excellent mechanical shape. Recall further that if the transmission
were bad, Sam would have to spend $3000 to repair it before he could sell the vehicle. So
he would only end up with $8000 if he bought the vehicle and its transmission was bad.
Finally, recall he had a friend who could run a test on the transmission, and we had the
following:

P (Test = positive|Tran = good) = .3

P (Test = positive|Tran = bad) = .9

P (Tran = good) = .8.

Figure 9.16 shows an influence diagram representing this problem instance. Notice that there
is an arrow from Tran to Test because the value of the test is probabilistically dependent on
the state of the transmission, and there is an arrow from Test to D because the outcome of
the test will be known at the time the decision is made. That is, D follows Test in sequence.
Note further that the probabilities in the influence diagram are the ones we know. We did
not need to use the Law of Total Probability and Bayes’ theorem to compute them, as we
did when we represented the instance with a decision tree. �

i
i

i
i

i
i

i
i

9.2 Influence Diagrams 219

D

ICK

U

P(ICK=$5|Dow=11,000,D=d1) = .2

P(ICK=$5|Dow=11,000,D=d2) = .3

P(ICK=$5|Dow=10,000,D=d1) = .5

P(ICK=$5|Dow=10,000,D=d2) = .6

d1 = Buy ICK

d2 = Buy option

U(d1,$5) = $50,000

U(d1,$20) = $200,000

U(d2,$5) = $0

U(d2,$20) = $250,000

Dow

P(Dow=11,000) = .6

P(Dow=10,000) = .4

Figure 9.15 An influence diagram modeling Nancy’s decision concerning buying ICK or
an option on ICK.

Example 9.13 Recall Example 9.5 in which Sam was in the same situation as in Example
9.4 except that the test was not free. Rather, it costs $200. So Sam had to decide whether
to run the test, buy the car without running the test, or keep his $10,000. Figure 9.17 shows
an influence diagram representing this problem instance. Notice that there is an edge from
R to D because decision R is made before decision D. Note further that there is an edge
from D to T because the test T is run only if we make decision r1. �

Next, we show a more complex instance, which we did not represent with a decision tree.

Example 9.14 Suppose Sam is in the same situation as in Example 9.13, but with the
following modifications. First, Sam knows that 20% of the Spiffycars were manufactured in
a plant that produced lemons and 80% of them were manufactured in a plant that produced
peaches. Furthermore, he knows 40% of the lemons have good transmissions and 90% of
the peaches have good transmissions. Also, 5% of the lemons have fine alternators, and

D

Tran

U

P(Tran=good) = .8

d1 = Buy Spiffycar

d2 = Do not buy
U(d1,good) = $11,000

U(d1,bad) = $8000

U(d2,t) = $10,000

Test

P(Test=positive|Tran=good) = .3

P(Test=positive|Tran=bad) = .9

Figure 9.16 An influence diagram modeling Sam’s decision concerning buying the Spiffycar.

i
i

i
i

i
i

i
i

220 Chapter 9 Decision Analysis

D

Tran

U

P(Tran=good) = .8

P(Tran=bad) = .2

d1 = Buy Spiffycar

d2 = Do not buy
U(r1,d1,good) = $10,800

U(r1,d1,bad) = $7800

U(r1,d2,t) = $9800

U(r2,d,good) = $11,000

U(r2,d, bad) = $8000

U(r3,d,t) = $10,000

Test

P(Test=positive|Tran=good) = .3

P(Test=positive|Tran=bad) = .9

R

r1 = Run test

r2 = Buy Spiffycar

r3 = Do not buy

Figure 9.17 An influence diagram modeling Sam’s decision concerning buying the Spiffycar
when he must pay for the test.

80% of the peaches have fine alternators. If the alternator is faulty (not fine), it will cost
Sam $600 to repair it before he can sell the vehicle. Figure 9.18 shows an influence diagram
representing this problem instance. Notice that the set of chance nodes in the influence
diagram constitutes a Bayesian network. For example, Tran and Alt are not independent,
but they are conditionally independent given Car. �

We close with a large problem instance in the medical domain.

Example 9.15 This example is taken from [Nease and Owens, 1997]. Suppose a patient
has a non-small-cell carcinoma of the lung. The primary tumor is 1 cm in diameter, a chest
X-ray indicates the tumor does not abut the chest wall or mediastinum, and additional
workup shows no evidence of distant metastases. The preferred treatment in this situation
is a thoracotomy. The alternative treatment is radiation. Of fundamental importance in the
decision to perform a thoracotomy is the likelihood of mediastinal metastases. If mediastinal
metastases are present, a thoracotomy would be contraindicated because it subjects the
patient to a risk of death with no health benefit. If mediastinal metastases are absent, a
thoracotomy offers a substantial survival advantage as long as the primary tumor has not
metastasized to distant organs.

We have two tests available for assessing the involvement of the mediastinum. They are
computed tomography (CT scan) and mediastinoscopy. This problem instance involves three
decisions. First, should the patient undergo a CT scan? Second, given this decision and
any CT results, should the patient undergo mediastinoscopy? Third, given these decisions
and any test results, should the patient undergo a thoracotomy?

The CT scan can detect mediastinal metastases. The test is not absolutely accurate.
Rather, if we let MedMet be a variable whose values are present and absent depending on
whether or not mediastinal metastases are present and CTest be a variable whose values
are cpos and cneg depending on whether or not the CT scan is positive, we have

P (CTest = cpos|MedMet = present) = .82

P (CTest = cpos|MedMet = absent) = .19.

i
i

i
i

i
i

i
i

9.2 Influence Diagrams 221

D

Tran

U

P(Tran=good|Car=lemon) = .4

P(Tran=good|Car=peach) = .9

d1 = Buy Spiffycar

d2 = Do not buy
U(r1,d1,good,fine) = $10,800

U(r1,d1,good,faulty) = $10,200

U(r1,d1,bad, fine) = $7800

U(r1,d1,bad,faulty) = $7200

U(r1,d2,t,a) = $9800

U(r2,d,good,fine) = $11,000

U(r2,d,good,faulty) = $10,400

U(r2,d,bad,fine) = $8000

U(r2,d, bad,faulty) = $7400

U(r3,d,t,a) = $10,000

Test

P(Test=positive|Tran=good) = .3

P(Test=positive|Tran=bad) = .9

R

r1 = Run test

r2 = Buy Spiffycar

r3 = Do not buy

Car

Alt

P(Car=lemon) = .2

P(Car=peach) = .8

P(Alt=fine|Car=lemon) = .05

P(Alt=fine|Car=peach) = .8

Figure 9.18 An influence diagram modeling Sam’s decision concerning buying the Spiffycar
when the alternator may be faulty.

The mediastinoscopy is an invasive test of mediastinal lymph nodes for determining whether
the tumor has spread to those nodes. If we let Mtest be a variable whose values are mpos
and mneg depending on whether or not the mediastinoscopy is positive, we have

P (MTest = mpos|MedMet = present) = .82

P (MTest = mpos|MedMet = absent) = .005.

The mediastinoscopy can cause death. If we let E be the decision concerning whether to
have the mediastinoscopy, e1 be the choice to have it, e2 be the choice not to have it, and
MedDeath be a variable whose values are mdie and mlive depending on whether the patient
dies from the mediastinoscopy, we have

P (MedDeath = mdie|E = e1) = .005

P (MedDeath = mdie|E = e2) = 0.

The thoracotomy has a greater chance of causing death than the alternative treatment of
radiation. If we let T be the decision concerning which treatment to have, t1 be the choice to
undergo a thoracotomy, t2 be the choice to undergo radiation, and Thordeath be a variable
whose values are tdie and tlive depending on whether the patient dies from the treatment,
we have

P (ThorDeath = tdie|T = t1) = .037

P (ThorDeath = tdie|T = t2) = .002.

Finally, we need the prior probability that mediastinal metastases are present. We have

P (MedMet = present) = .46.

Figure 9.19 shows an influence diagram representing this problem instance. Note that
we considered quality adjustments to life expectancy (QALE) and financial costs to be
insignificant in this example. The value node is only in terms of life expectancy. �

i
i

i
i

i
i

i
i

222 Chapter 9 Decision Analysis

T

MTest

U

P(present) = .46

c1 = Do CT

c2 = Do not do

U(t1,present,tlive,mlive) = 1.8 yrs

U(t1,absent,tlive, mlive) = 4.45 yrs

U(t2,present,tlive,mlive) = 1.8 yrs

U(t2,absent,tlive,mlive) = 2.64 yrs

U(t,m,tdie,d) = 0

U(t,m,d,mdie) = 0

CTest

P(cpos|present,c1) = .82

P(cpos|absent,c1) = .19

P(notrun|m,c2) = 1

C

E

e1 = Do mediastinoscopy

e2 = Do not do

t1 = Do thoracotomy

t2 = Do radiation

Med

Met

P(mpos|present,e1) = .82

P(mpos|absent,e1) = .005

P(notrun|m,e2) = 1

Thor

Death

Med

Death

P(tdie|t1) = .037

P(tdie|t2) = .002

P(mdie|e1) = .005

P(mdie|e2) = 0

Figure 9.19 An influence diagram modeling the decision of whether to be treated with a
thoracotomy.

9.2.2 Solving Influence Diagrams

We first illustrate how influence diagrams can be solved by presenting some examples. Then
we show solving influence diagrams using the package Netica.

9.2.3 Techniques for Solving Influence Diagrams

Next, we show how to solve influence diagrams.

Example 9.16 Consider the influence diagram in Figure 9.13, which was developed in
Example 9.9. To solve the influence diagram, we need to determine which decision choice
has the largest expected utility. The expected utility of a decision choice is the expected
value E of U given the choice is made. We have

EU(d1) = E(U |d1)

= P ($5|d1)U(d1, $5) + P ($10|d1)U(d1, $10) + P ($20|d1)U(d1, $20)

= (.25)($500) + (.25)($1000) + (.5)($2000)

= $1375

EU(d2) = E(U |d2)

= P ($5|d2)U(d2, $5) + P ($10|d2)U(d2, $10) + P ($20|d2)U(d2, $20)

= (.25)($1005) + (.25)($1005) + (.5)($1005)

= $1005.

i
i

i
i

i
i

i
i

9.2 Influence Diagrams 223

The utility of our decision is therefore

EU(D) = max(EU(d1), EU(d2))

= max($1375, $1005) = $1375,

and our decision choice is d1. �

Notice in the previous example that the probabilities do not depend on the decision
choice. This is because there is no edge from D to NASDIP . In general, this is not always
the case, as the next example illustrates.

Example 9.17 Consider the influence diagram in Figure 9.15, which was developed in
Example 9.11. We have

EU(d1) = E(U |d1)

= P ($5|d1)U(d1, $5) + P ($20|d1)U(d1, $20)

= (.32)($50,000) + (.68)($200,000)

= $152,000

EU(d2) = E(U |d2)

= P ($5|d2)U(d2, $5) + P ($20|d2)U(d2, $20)

= (.42)($0) + (.58)($250,000)

= $145,000

EU(D) = max(EU(d1), EU(d2))

= max($152,000, $145,000) = $152,000,

and our decision choice is d1. You may wonder where we obtained the values of P ($5|d1)
and P ($5|d2). Once we instantiate the decision node, the chance nodes comprise a Bayesian
network. We then call a Bayesian network inference algorithm to compute the needed
conditional probabilities. For example, that algorithm would do the following computation:

P ($5|d1) = P ($5|11,000, d1)P (11,000) + P ($5|10,000, d1)P (10,000)

= (.2)(.6) + (.5)(.4) = .32.

Henceforth, we will not usually show the computations done by the Bayesian network infer-
ence algorithm. We will only show the results. �

Example 9.18 Consider the influence diagram in Figure 9.16, which was developed in
Example 9.12. Because there is an arrow from Test to D, the value of Test will be known
when the decision is made. So we need to determine the expected value of U given each
value of Test. We have

EU(d1|positive) = E(U |d1, positive)

= P (good|d1, positive)U(d1, good) +

P (bad|d1, positive)U(d1, bad)

= (.571429)($11,000) + (.428571)($8000)

= $9714

i
i

i
i

i
i

i
i

224 Chapter 9 Decision Analysis

EU(d2|positive) = E(U |d2, positive)

= P (good|d2, positive)U(d2, good) +

P (bad|d2, positive)U(d2, bad)

= (.571429)($10,000) + (.428571)($10,000)

= $10,000

EU(D|positive) = max(EU(d1|positive), EU(d2|positive))
= max($9714, $10,000) = $10,000,

and our decision choice is d2. As in the previous example, the needed conditional probabil-
ities are obtained from a Bayesian network inference algorithm.

It is left as an exercise to compute EU(D|negative). �

Example 9.19 Consider the influence diagram in Figure 9.17, which was developed in
Example 9.13. Now we have two decisions: R and D. Because there is an edge from R to
D, decision R is made first, and the EU of this decision is the one we need to compute. We
have

EU(r1) = E(U |r1)

= P (d1, good|r1)U(r1, d1, good) + P (d1, bad|r1)U(r1, d1, bad) +

P (d2, good|r1)U(r1, d2, good) + P (d2, bad|r1)U(r1, d2, bad).

We need to compute the conditional probabilities in this expression. Because D and Tran
are not dependent on R (decision R only determines the value of decision D in the sense
that decision D does not take place for some values of R), we no longer show r1 to the right
of the conditioning bar. We have

P (d1, good) = P (d1|good)P (good)

= [P (d1|positive)P (positive|good) +

P (d1|negative)P (negative|good)]P (good)

= [(0)P (positive|good) + (1)P (negative|good)]P (good)

= P (negative|good)P (good)

= (.7)(.8) = .56.

The second equality above is obtained because D and Tran are independent conditional on
Test. The values of P (d1|positive) and P (d1|negative) were obtained by first computing
expected utilities as in Example 9.18 and then by setting the conditional probability to 1 if
the decision choice is the one that maximizes expected utility and to 0 otherwise. It is left
as an exercise to show that the other three probabilities are .02, .24, and .18, respectively.
We therefore have

EU(r1) = E(U |r1)

= P (d1, good)U(r1, d1, good) + P (d1, bad)U(r1, d1, bad) +

P (d2, good)U(r1, d2, good) + P (d2, bad)U(r1, d2, bad)

= (.56)($10,800) + (.02)($7800) + (.24)($9800) + (.18)($9800)

= $10,320.

It is left as an exercise to show
EU(r2) = $10,400

i
i

i
i

i
i

i
i

9.2 Influence Diagrams 225

EU(r3) = $10,000.

So

EU(R) = max(EU(r1), EU(r2), EU(r2))

= max($10,320, $10,400, $10,000) = $10,500,

and our decision choice is r2. �

Example 9.20 Next, we show another method for solving the influence diagram in Figure
9.17, which, although it may be less elegant than the previous method, corresponds more to
the way decision trees are solved. In this method, with decision R fixed at each of its choices,
we solve the resultant influence diagram for decision D, and then we use these results to
solve R.

First, fixing R at r1, we solve the influence diagram for D. The steps are the same as
those in Example 9.18. That is, because there is an arrow from Test to D, the value of Test
will be known when the decision is made. So we need to determine the expected value of U
given each value of Test. We have

EU(d1|r1, positive) = E(U |r1, d1, positive)

= P (good|positive)U(r1, d1, good) +

P (bad|positive)U(r1, d1, bad)

= (.571429)($11,000) + (.429571)($8000)

= $9522

EU(d2|r1, positive) = E(U |r1, d2, positive)

= P (good|positive)U(r1, d2, good) +

P (bad|positive)U(r1, d2, bad)

= (.571429)($9800) + (.429571)($9800)

= $9800

EU(D|r1, positive) = max(EU(d1|r1, positive), EU(d2|r1, positive))
= max($9522, $9800) = $9800

EU(d1|r1, negative) = E(U |r1, d1, negative)

= P (good|negative)U(r1, d1, good) +

P (bad|negative)U(r1, d1, bad)

= (.965517)($10,800) + (.034483)($7800)

= $10,697

EU(d2|r1, negative) = E(U |r1, d2, negative)

= P (good|negative)U(r1, d2, good) +

P (bad|negative)U(r1, d2, bad)

= (.965517)($9800) + (.034483)($9800)

= $9800

i
i

i
i

i
i

i
i

226 Chapter 9 Decision Analysis

EU(D|r1, negative) = max(EU(d1|r1, negative), EU(d2|r1, negative))
= max($10,697, $9800) = $10,697.

As before, the conditional probabilities are obtained from a Bayesian network inference
algorithm. Once we have the expected utilities of D, we can compute the expected utility
of R as follows:

EU(r1) = EU(D|r1, positive)P (positive) + EU(D|r1, negative)P (negative)

= $9800(.42) + $10,697(.58)

= $10,320.

Note that this is the same value we obtained using the other method. We next proceed to
compute EU(r2) and EU(r3) in the same way. It is left as an exercise to do so. �

The second method illustrated in the previous example extends readily to an algorithm
for solving influence diagrams. The algorithm solves the influence diagram by converting it
to the decision tree corresponding to the influence diagram. For example, if we had three
decision nodes D,E, and F in that order, we would first instantiate D to its first decision
choice d1. This amounts to focusing on the subtree (of the corresponding decision tree)
emanating from decision d1. Then, we would instantiate E to its first decision choice e1.
This amounts to focusing on the subtree emanating from decision e1. Because F is our last
decision, we would then solve the influence diagram for decision F. Next, we would compute
the expected utility of E’s first decision choice e1. After doing this for all of E’s decision
choices, we would solve the influence diagram for decision E. We would then compute the
expected utility of D’s first decision choice. This process would be repeated for each of D’s
decision choices. It is left as an exercise to write an algorithm that implements this method.

Olmsted [1983] developed a way to evaluate an influence diagram without transforming
it to a decision tree. The method operates directly on the influence diagram by perform-
ing arc reversal/node reduction operations. These operations successively transform the
diagram, ending with a diagram with only one utility node that holds the utility of the
optimal decision. The method appears in [Shachter, 1986]. Tatman and Schachter [1990]
use supervalue nodes, which simplify the construction of influence diagrams and subsequent
sensitivity analysis. Another method for evaluating influence diagrams is to use variable
elimination, which is described in [Jensen, 2001].

9.2.4 Solving Influence Diagrams Using Netica

Next we show how to solve an influence diagram using the software package Netica.

Example 9.21 Recall that Figure 9.15 showed an influence diagram representing the prob-
lem instance in Example 9.11. Figure 9.20 shows that influence diagram developed using
Netica. A peculiarity of Netica is that node values must start with a letter. So we placed an
“n” before numeric values. Another unfortunate feature is that both chance and decision
nodes are depicted as rectangles.

The values shown at the decision node D are the expected values of the decision alter-
natives. We see that

E(d1) = 1.520× 105 = 152,000

E(d2) = 1.450× 105 = 145,000.

So the decision alternative that maximizes expected value is d1. �

i
i

i
i

i
i

i
i

9.2 Influence Diagrams 227

Dow

n11000

n10000

60.0

40.0

Ick

n5

n20

37.0

63.0

U

D

d1

d2

1.520e5

1.450e5

Figure 9.20 The influence diagram in Figure 9.15 developed using Netica.

Example 9.22 Recall that Figure 9.18 showed an influence diagram representing the prob-
lem instance in Example 9.14. Figure 9.21 (a) shows that influence diagram developed using
Netica. We see that the decision alternative of “Run Test” that maximizes expected utility
is to run the test. After running the test, the test will come back either positive or negative,
and we must then decide whether or not to buy the car. The influence diagram updated to
running the test and the test coming back positive appears in Figure 9.21 (b). We see that in
this case the decision alternative that maximizes expected utility is to not buy the car. The
influence diagram updated to running the test and the test coming back negative appears
in Figure 9.21 (c). We see that now the decision alternative that maximizes expected utility
is to buy the car. �

Example 9.23 Recall that Figure 9.19 showed an influence diagram representing the prob-
lem instance in Example 9.15. Figure 9.22 (a) shows that influence diagram developed using
Netica. We see that the decision alternative of “CT Scan” that maximizes expected utility
is c1, which is to do the scan. After doing the scan, the scan will come back either positive
or negative, and we must then decide whether or not to do the mediastinoscopy. The influ-
ence diagram updated to doing the CT scan and the scan coming back positive appears in
Figure 9.22 (b). We see that in this case the decision alternative that maximizes expected
utility is to do the mediastinoscopy. The influence diagram updated to then doing the me-
diastinoscopy and the test coming back negative appears in Figure 9.22 (c). We see that in
this case the decision alternative that maximizes expected utility is to do the thoracotomy.

�

In the previous example, it is not surprising that the decision alternative that maximizes
expected utility is to do the CT scan because that scan has no cost. Suppose instead that
there is a financial cost of $1000 involved in doing the scan. Because the utility function
is in terms of years of life, to perform a decision analysis we must convert the $1000 to
units of years of life (or vice versa). Let’s say the decision maker decides $1000 is equivalent
to .01 years of life. It is left as an exercise to determine whether in this case the decision
alternative that maximizes expected utility is still to do the CT scan.

Example 9.24 Start-up companies often do not have access to sufficient capital, but if
they could obtain that capital, they may have the potential for good long-term growth.
If a company is perceived as having such potential, investors can hope to obtain above-
average returns by investing in such companies. Money provided by investors to start-up

i
i

i
i

i
i

i
i

228 Chapter 9 Decision Analysis

V

Run Test

runtest
buyspiffycar
donotbuy

10219.8
10190.0
10000.0

Buy Car

buy
donotbuy

Alt

fine
notfine

65.0
35.0

Tran

good
bad

80.0
20.0

Car

lemon
peach

20.0
80.0

Test

positive
negative
notrun

14.0
19.3
66.7

(a)

V

Run Test

runtest
buyspiffycar
donotbuy

9800.00
 0
 0

Buy Car

buy
donotbuy

9252.85
9800.00

Alt

fine
notfine

56.4
43.6

Tran

good
bad

57.1
42.9

Car

lemon
peach

31.4
68.6

Test

positive
negative
notrun

 100
 0
 0

(b)

V

Run Test

runtest
buyspiffycar
donotbuy

10523.7
 0
 0

Buy Car

buy
donotbuy

10523.7
9800.00

Alt

fine
notfine

71.2
28.8

Tran

good
bad

96.6
3.45

Car

lemon
peach

11.7
88.3

Test

positive
negative
notrun

 0
 100
 0

(c)

Figure 9.21 The influence diagram in Figure 9.18 developed using Netica appears in (a).
The influence diagram updated to running the test and the test coming back positive appears
in (b). The influence diagram updated to running the test and the test coming back negative
appears in (c).

i
i

i
i

i
i

i
i

9.2 Influence Diagrams 229

Thoracotomy

t1
t2

U
ThorDeath

tdie
tlive

1.85
98.1

Ctest

cpos
cneg
cnone

15.8
34.2
50.0

MedMet

present
absent

20.0
80.0

Ct scan

c1
c2

3.77794
3.77496

Mediastinoscopy

m1
m2

MedDeath

mdie
mlive

0.25
99.8

Mtest

mpos
mneg
mnone

8.40
41.6
50.0

(a)

Thoracotomy

t1
t2

U
ThorDeath

tdie
tlive

1.85
98.2

Ctest

cpos
cneg
cnone

 100
 0
 0

MedMet

present
absent

51.9
48.1

Ct scan

c1
c2

2.97037
 0

Mediastinoscopy

m1
m2

2.97037
2.96092

MedDeath

mdie
mlive

0.25
99.8

Mtest

mpos
mneg
mnone

21.4
28.6
50.0

(b)

Thoracotomy

t1
t2

3.84924
2.49030

U
ThorDeath

tdie
tlive

1.85
98.2

Ctest

cpos
cneg
cnone

 100
 0
 0

MedMet

present
absent

16.3
83.7

Ct scan

c1
c2

3.84924
 0

Mediastinoscopy

m1
m2

3.84924
 0

MedDeath

mdie
mlive

0.50
99.5

Mtest

mpos
mneg
mnone

 0
 100

 0

(c)

Figure 9.22 The influence diagram in Figure 9.19 developed using Netica appears in (a).
The influence diagram updated to doing the CT scan and the scan coming back positive
appears in (b). The influence diagram updated to then doing the mediastinoscopy and the
test coming back negative appears in (c).

i
i

i
i

i
i

i
i

230 Chapter 9 Decision Analysis

Dilution Risk

true
false

70.2
29.7

VC Resources Rel. to Fund.

sufficient
insufficient

25.0
75.0

Mmgt. Reputation

high
low

35.0
65.0

Acquainted With Mgmt.

true
false

53.8
46.3

Strong Relationship Network

true
false

42.5
57.5

Strong Advisory Brd.

true
false

42.5
57.5

Relevant Mgmt. Experience

true
false

35.0
65.0

Others Assmt. Market

high
low

31.1
68.9

Partner Motivation

high
low

50.0
50.0

Tchnlgy Know How

high
low

37.5
62.5

Pace of Industry Dvlpmt

favble
unfavble

62.3
37.7

Technology Potential

high
low

25.0
75.0

Other Industry Trends

favble
unfavble

50.0
50.0

Mkt. Know How

high
low

26.3
73.7

Mgmt Quality

high
low

25.0
75.0

Product Quality

high
low

39.5
60.5

Science Technology Quality

high
low

25.0
75.0

Market Strategy

apprt
inapprt

25.0
75.0

Potential for Product Liability

true
false

25.0
75.0

Dynamic Competitive Issues

favble
unfavble

25.0
75.0

Needed Industry Innovation

present
absent

50.0
50.0

Progress Big Players

fast
slow

50.0
50.0

Other Assmt. Product

high
low

35.2
64.8

U

Technology Uncertainty

high
low

75.0
25.0

Risk Adj. Product Pot.

high
low

20.4
79.6

Risk Adj. Market Pot.

high
low

12.2
87.8

Strong Partnerships

true
false

4.67
95.3

Likely Risk Adjusted Return

high
low

10.7
89.3

Partner Size Strength

high
low
none

5.00
5.00
90.0

Invest

yes
no

11.3263
50.0000

VC Risk Adj. Return Exp.

high
low

88.0
12.0

Product Strategy

apprt
inapprt

38.1
61.9

Need for Additional Fund.

true
false

72.5
27.5

Payback Horizon

long
short

90.0
10.0

Personality Traits Mgmt.

apprt
inapprt

47.5
52.5

Figure 9.23 An influence diagram for venture capital funding decision making.

firms is called venture capital (VC). Wealthy investors, investment banks, and other
financial institutions typically provide venture capital funding. Venture capital investment
can be very risky. A study in [Ruhnka et al., 1992] indicates that 40% of backed ventures
fail. Therefore, careful analysis of a new firm’s prospects is warranted before deciding
whether to back the firm. Venture capitalists are experts who analyze a firm’s prospects.
Kemmerer et al. [2002] performed an in-depth interview of an expert venture capitalist and
elicited a causal (Bayesian) network from that expert. They then refined the network, and
finally assessed the conditional probability distributions for the network with the help of
the venture capitalist. As discussed in [Shepherd and Zacharakis, 2002], such models often
outperform the venture capitalist, whose knowledge was used to create them. Figure 9.23
shows the expert system resulting from their study. This application is discussed in detail
in [Neapolitan and Jiang, 2007].

i
i

i
i

i
i

i
i

9.3 Modeling Risk Preferences 231

-1000 1000 2000 3000 4000 5000

-1.0

-0.5

0.5

1.0

x

y

-1000 1000 2000 3000 4000 5000

-1.0

-0.5

0.5

1.0

x

y

(a) (b)

Figure 9.24 The U500(x) = 1−e−x/500 function is in (a), while the U1000(x) = 1−e−x/1000

function is in (b).

9.3 Modeling Risk Preferences

Recall that in Example 9.1, we chose the alternative with the largest expected value. Surely,
a person who is very risk averse might prefer the sure $1005 over the possibility of ending
up with only $500. However, many people maximize expected value when the amount of
money is small relative to their total wealth. The idea is that in the long run they will
end up better off by so doing. When an individual maximizes expected value to reach a
decision, the individual is called an expected value maximizer. On the other hand, given
the situation discussed in Example 9.1, most people would not invest $100,000 in NASDIP
because that is too much money relative to their total wealth. In the case of decisions in
which an individual would not maximize expected value, we need to model the individual’s
attitude toward risk in order to use decision analysis to recommend a decision. One way
to do this is to use a utility function, which is a function that maps dollar amounts to
utilities. We discuss such functions next.

9.3.1 Exponential Utility Function

The exponential utility function is given by

Ur(x) = 1− e−x/r.

In this function the parameter r, called the risk tolerance, determines the degree of risk
aversion modeled by the function. As r becomes smaller, the function models more risk-
averse behavior. Figure 9.24 (a) shows U500(x), while Figure 9.24 (b) shows U1000(x).
Notice that both functions are concave (opening downward), and the one in Figure 9.24 (b)
is closer to being a straight line. The more concave the function is, the more risk averse is the
behavior modeled by the function. To model risk neutrality (i.e., simply being an expected
value maximizer), we would use a straight line instead of the exponential utility function, and
to model risk seeking behavior we would use a convex (opening upward) function. Chapter
5 showed many examples of modeling risk neutrality. Here, we concentrate on modeling
risk-averse behavior.

Example 9.25 Suppose Sam is making the decision in Example 9.1, and Sam decides his
risk tolerance r is equal to 500. Then for Sam,

i
i

i
i

i
i

i
i

232 Chapter 9 Decision Analysis

D

A

$x

-$x/2

$0

.5

.5

d2

d1

Figure 9.25 You can assess the risk tolerance r by determining the largest value of x for
which you would be indifferent between d1 and d2.

EU(Buy NASDIP)

= EU(NASDIP)

= .25U500($500) + .25U500($1000) + .5U500($2000)

= .25
(

1− e−500/500
)

+ .25
(

1− e−1000/500
)

+ .5
(

1− e−2000/500
)

= .86504

EU(Leave $1000 in bank) = U500 ($1005) = 1− e−1005/500 = .86601.

So Sam decides to leave the money in the bank. �

Example 9.26 Suppose Sue is less risk averse than Sam, and she decides that her risk
tolerance r equals 1000. If Sue is making the decision in Chapter 5, Example 9.1, then for
Sue,

EU(Buy NASDIP)

= EU(NASDIP)

= .25U1000($500) + .25U1000($1000) + .5U1000($2000)

= .25
(

1− e−500/1000
)

+ .25
(

1− e−1000/1000
)

+ .5
(

1− e−2000/1000
)

= .68873

EU(Leave $1000 in bank) = U1000 ($1005) = 1− e−1005/1000 = .63396.

So Sue decides to buy NASDIP. �

9.3.2 Assessing r

In the previous examples we simply assigned risk tolerances to Sam and Sue. You should
be wondering how an individual arrives at her or his personal risk tolerance. Next, we show
a method for assessing it.

One way to determine your personal value of r in the exponential utility function is
to consider a gamble in which you will win $x with probability .5 and lose −$x/2 with
probability .5. Your value of r is the largest value of x for which you would choose the
lottery over obtaining nothing. This is illustrated in Figure 9.25.

i
i

i
i

i
i

i
i

9.4 Analyzing Risk Directly 233

Example 9.27 Suppose we are about to toss a fair coin. I (Richard Neapolitan) would
certainly like the gamble in which I win $10 if a heads occurs and lose $5 if a tails occurs.
If we increased the amounts to $100 and $50, or even to $1000 and $500, I would still like
the gamble. However, if we increased the amounts to $1,000,000 and $500,000, I would no
longer like the gamble because I cannot afford a 50% chance of losing $500,000. By going
back and forth like this (similar to a binary cut), I can assess my personal value of r. For
me, r is about equal to $50,000. (Professors do not make all that much money.) �

You may inquire as to the justification for using this gamble to assess r. Notice that for
any r,

.5
(

1− e−r/r
)

+ .5
(

1− e−(−r/2)/r
)

= .0083

and
1− e−0/r = 0.

We see that for a given value of the risk tolerance r, the gamble in which one wins $r with
probability .5 and loses −$r/2 with probability .5 has about the same utility as receiving $0
for certain. We can use this fact and then work in reverse to assess r. That is, we determine
the value of r for which we are indifferent between this gamble and obtaining nothing.

9.4 Analyzing Risk Directly

Some decision makers may not be comfortable assessing personal utility functions and mak-
ing decisions based on such functions. Rather, they may want to directly analyze the risk
inherent in a decision alternative. One way to do this is to use the variance as a measure
of spread from the expected value. Another way is to develop risk profiles. We discuss each
technique in turn.

9.4.1 Using the Variance to Measure Risk

We start with an example.

Example 9.28 Suppose Patricia is going to make the decision modeled by the decision tree
in Figure 9.26. If Patricia simply maximizes expected value, it is left as an exercise to show
that

E(d1) = $1220

E(d2) = $1200.

So d1 is the decision alternative that maximizes expected value. However, the expected
values by themselves tell us nothing of the risk involved in the alternatives. Let’s also
compute the variance of each decision alternative. If we choose alternative d1, then

P (2000) = .8× .7 = .56

P (1000) = .1

P (0) = .8× .3 + .1 = .34.

Notice that there are two ways $0 could be obtained. That is, outcomes a1 and c1 could
occur with probability .8 × .3, and outcome a2 could occur with probability .1. We then
have that

V ar(d1) = (2000− 1220)2P (2000) + (1000− 1220)2P (1000) + (0− 1220)2P (0)

= (2000− 1220)2 × .56 + (1000− 1220)2 × .1 + (0− 1220)2 × .34

= 851,600

i
i

i
i

i
i

i
i

234 Chapter 9 Decision Analysis

E

C

$2000

$0

$1000

.7

.3e1

e2

c1

c2

A

a1

a2

.8

D

B

$2000

$1000

.2

.8

b1

b2

d1

d2

a3

.1

.1

$0

$1000

Figure 9.26 The decision tree discussed in Example 9.28.

D

A

$20,000

$1000

$900

.1

.9

d2

d1

Figure 9.27 The decision tree discussed in Example 9.29.

σd1 =
√

851,600 = 922.82.

It is left as an exercise to show that

V ar(d2) = 160,000

σd2 = 400.

So if we use the variance as our measure of risk, we deem d1 somewhat more risky, which
means if Patricia is somewhat risk averse, she might choose d2. �

Using the variance alone as the measure of risk can sometimes be misleading. The next
example illustrates this.

Example 9.29 Now suppose Patricia is going to make the decision modeled by the decision

i
i

i
i

i
i

i
i

9.4 Analyzing Risk Directly 235

Dollars

P
ro

b
a

b
il

it
y

200010000

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Risk Profile for Decision Alternative d1

Dollars

P
ro

b
a

b
il

it
y

200010000

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Risk Profile for Decision Alternative d2

Figure 9.28 Risk profiles for the decision in Example 9.28.

tree in Figure 9.27. It is left as an exercise to show that

E(d1) = $2900

V ar(d1) = 32,490,000

σd1 = 5700

and

E(d2) = $900

V ar(d2) = 0

σd2 = 0.

If Patricia uses only the variance as her measure of risk, she might choose alternative d2
because d1 has such a large variance. Yet alternative d1 is sure to yield more return than
alternative d2. This is a case of deterministic dominance, which is discussed in Section 9.4.3.

�

We see that the use of the variance alone as our measure of risk can be very misleading.

9.4.2 Risk Profiles

The expected value and variance are summary statistics, and, therefore, we lose information
if all we report are these values. Alternatively, for each decision alternative, we could report
the probability of all possible outcomes if the alternative is chosen. A graph that shows
these probabilities is called a risk profile.

i
i

i
i

i
i

i
i

236 Chapter 9 Decision Analysis

Dollars
P

ro
b

a
b

il
it

y
2000150010005000

1.0

0.8

0.6

0.4

0.2

0.0

Cumulative Risk Profile for Decision Alternative d1

Dollars

P
ro

b
a

b
il

it
y

2000150010005000

1.0

0.8

0.6

0.4

0.2

0.0

Cumulative Risk Profile for Decision Alternative d2

Figure 9.29 Cumulative risk profiles for the decision in Example 9.28.

Example 9.30 Consider again Patricia’s decision, which was discussed in Example 9.28.
In that example, we computed the probability of all possible outcomes for each decision.
We used those results to create the risk profiles in Figure 9.28. From these risk profiles,
Patricia can see that there is a good chance she could end up with nothing if she chooses
alternative d1, but she also has a good chance of obtaining $2000. On the other hand, the
least she could end up with is $1000 if she chooses alternative d2, but probably this is all
she will obtain. �

A cumulative risk profile shows for each amount x the probability that the payoff
will be less than or equal to x if the decision alternative is chosen. A cumulative risk profile
is a cumulative distribution function. Figure 9.29 shows the cumulative risk profiles for the
decision in Example 9.28.

9.4.3 Dominance

Some decisions do not require the use of utility functions or risk profiles because one decision
alternative dominates the other for all decision makers. We discuss dominance next.

9.4.3.1 Deterministic Dominance

Suppose we have a decision that can be modeled using the decision tree in Figure 9.30. If we
choose alternative d1, the least amount of money we will realize is $4, whereas if we choose
alternative d2, the most amount of money we will realize is $3. Assuming that maximizing
wealth is the only consideration in this decision, there is then no reasonable argument one
can offer for choosing d2 over d1, and we say d1 deterministically dominates d2. In general,

i
i

i
i

i
i

i
i

9.4 Analyzing Risk Directly 237

D

A

$6

$4

.7

.3

d2

d1

B

$3

$2

.9

.1

a1

a2

b1

b2

Figure 9.30 Decision alternative d1 deterministically dominates decision alternative d2.

D

A

$6

$4

.7

.3

d2

d1

B

$6

$4

.9

.1

a1

a2

b1

b2

Figure 9.31 Decision alternative d2 stochastically dominates decision alternative d1.

decision alternative d1 deterministically dominates decision alternative d2 if the utility
obtained from choosing d1 is greater than the utility obtained from choosing d2 regardless
of the outcomes of chance nodes. When we observe deterministic dominance, there is no
need to compute expected utility or develop a risk profile.

9.4.3.2 Stochastic Dominance

Suppose we have a decision that can be modeled using the decision tree in Figure 9.31. If the
outcomes are a1 and b2, we will realize more money if we choose d1, while if the outcomes
are a2 and b1, we will realize more money if we choose d2. So there is no deterministic
dominance. However, the outcomes are the same for both decisions, namely $6 and $4, and,
if we choose d2, the probability is higher that we will receive $6. So again, assuming that
maximizing wealth is the only consideration in this decision, there is no reasonable argument
for choosing d1 over d2, and we say alternative d2 stochastically dominates alternative d1.

A different case of stochastic dominance is illustrated by the decision tree in Figure
9.32. In that tree, the probabilities are the same for both chance nodes, but the utilities for
the outcomes of B are higher. That is, if b1 occurs, we realize $7, while if a1 occurs, we
realize only $6, and if b2 occurs, we realize $5, while if a2 occurs, we realize only $4. So
again, assuming that maximizing wealth is the only consideration in this decision, there is

i
i

i
i

i
i

i
i

238 Chapter 9 Decision Analysis

D

A

$6

$4

.7

.3

d2

d1

B

$7

$5

.7

.3

a1

a2

b1

b2

Figure 9.32 Decision alternative d2 stochastically dominates decision alternative d1.

0 1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.2

0.4

0.6

0.8

1.0

x

F
2
(x)

F
1
(x)

Figure 9.33 If F1(x) is the cumulative risk profile for d1 and F2(x) is the cumulative risk
profile for d2, then d2 stochastically dominates d1.

no reasonable argument for choosing d1 over d2, and we say alternative d2 stochastically
dominates alternative d1.

Although it often is not hard to recognize stochastic dominance, it is a bit tricky to define
the concept. We do so next in terms of cumulative risk profiles. We say that alternative
d2 stochastically dominates alternative d1 if the cumulative risk profile F2(x) for d2 lies
under the cumulative risk profile F1(x) for d1 for at least one value of x and does not lie
over it for any values of x. That is, for at least one value of x,

F2(x) < F1(x),

and for all values of x,
F2(x) ≤ F1(x).

This is illustrated in Figure 9.33. Why should this be the definition of stochastic dominance?
Look again at Figure 9.33. There is no value of x such that the probability of realizing $x
or less is smaller if we choose d1 than if we choose d2. So there is no amount of money that
we may want or require that would make d1 the better choice.

Figure 9.34 shows two cumulative risk profiles that cross, which means we do not have
stochastic dominance. Now the decision alternative chosen can depend on an individual’s
preference. For example, if the amounts are in units of $100, and Mary needs at least $400
to pay her rent or else be evicted, she may choose alternative d1. On the other hand, if Sam
needs at least $800 to pay his rent or else be evicted, he may choose alternative d2.

i
i

i
i

i
i

i
i

9.5 Good Decision versus Good Outcome 239

0 1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.2

0.4

0.6

0.8

1.0

x

F
1
(x)

F
2
(x)

Figure 9.34 There is no stochastic dominance.

9.5 Good Decision versus Good Outcome

Suppose Scott and Sue are each about to make the decision modeled by the decision tree in
Figure 9.32, Scott chooses alternative d1, and Sue chooses alternative d2. Suppose further
that outcomes a1 and b2 occur. So Scott ends up with $6, and Sue ends up with $5. Did
Scott make a better decision than Sue? We just claimed that there is no reasonable argument
for choosing d1 over d2. If we accept that claim, we cannot now conclude that Scott made
the better decision. Rather, Scott made a bad decision with a good outcome, while Sue
made a good decision with a bad outcome. The quality of a decision must be judged
based on the information available when the decision is made, not on outcomes realized
after the decision is made. I (Richard Neapolitan) amusingly remember the following story
from my youth. When my Uncle Hershell got out of the army, he used his savings to buy a
farm in Texas next to his parents’ farm. The ostensible reason was that he wanted to live
near his parents and resume his life as a farmer. Somewhat later, oil was discovered on his
farm, and Hershell became wealthy as a result. After that, my dad used to say, “Everyone
thought Hershell was not too bright when he wasted money on a farm with such poor soil,
but it turns out he was shrewd like a fox.”

9.6 Sensitivity Analysis

Both influence diagrams and decision trees require that we assess probabilities and outcomes.
Sometimes assessing these values precisely can be a difficult and laborious task. For example,
it would be difficult and time consuming to determine whether the probability that the S&P
500 will be above 1500 in January 2008 is .3 or .35. Sometimes further refinement of these
values would not affect our decision anyway. Next, we discuss sensitivity analysis, which
is an analysis of how the values of outcomes and probabilities can affect our decision. In a
one-way sensitivity analysis, we analyze the sensitivity to a single probability.

Example 9.31 Suppose that currently IBM is at $10 a share, and you feel there is a .5
probability it will be go down to $5 by the end of the month and a .5 probability it will
go up to $20. You have $1000 to invest, and you will either buy 100 shares of IBM or put
the money in the bank and earn a monthly interest rate of .005. Although you are fairly
confident of your assessment of the outcomes, you are not very confident of your assessment
of the probabilities. In this case, you can represent your decision using the decision tree in
Figure 9.35. Notice in that tree that we represented the probability of IBM going up by a

i
i

i
i

i
i

i
i

240 Chapter 9 Decision Analysis

D

IBM

$2000

$500

$1005

p

1 - p

Buy IBM

Bank

$20

$5

Figure 9.35 As long as p is greater than .337, buying IBM maximizes expected value.

D

IBM
1

$2000

$500

q

1 - q
Buy IBM

$20

$5

$5

DOW

IBM
2

$2000

$500

r

1 - r

$20

11,000

.4

10,000

.6

$1005
Bank

Figure 9.36 For this decision we need to do a two-way sensitivity analysis.

variable p. We then have

E(Buy IBM) = p(2000) + (1− p)(500)

E(Bank) = $1005.

We will buy IBM if E(Buy IBM) > E(Bank), which is the case if

p(2000) + (1− p)(500) > 1005.

Solving this inequality for p, we have

p > .337.

We have determined how sensitive our decision is to the value of p. As long as we feel that
the probability of IBM going up is at least equal to .337, we will buy IBM. We need not
refine our probabilistic assessment further. �

In a two-way sensitivity analysis, we simultaneously analyze the sensitivity of our
decision to two quantities. The next example shows such an analysis.

i
i

i
i

i
i

i
i

9.7 Value of Information 241

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

r

q

Figure 9.37 The line q = 101/120− 3r/2. As long as (r, q) is above this line, the decision
that mazimizes expected value in Example 9.32 is to buy IBM.

Example 9.32 Suppose you are in the same situation as in the previous example, except
you are confident in your assessment of the probability of the Dow going up, but you are
not confident in your assessment of the probabilities of your stock going up dependent on
whether the Dow goes up or down. Specifically, you model your decision using the decision
tree in Figure 9.36. We then have

E(Buy IBM) = .4(q × 2000 + (1− q)× 500) + .6(r × 2000 + (1− r)× 500)

E(Bank) = 1005.

We will buy IBM if E(Buy IBM) > E(Bank), which is the case if

.4(q × 2000 + (1− q)× 500) + .6(r × 2000 + (1− r)× 500) > 1005.

Simplifying this inequality, we obtain

q >
101

120
− 3r

2
.

The line q = 101/120−3r/2 is plotted in Figure 9.37. Owing to the previous inequality, the
decision that maximizes expected value is to buy IBM as long as the point (r, q) lies above
that line. For example, if r = .6 and q = .1 or r = .3 and q = .8, this would be our decision.
However, if r = .3 and q = .1, it would not. �

9.7 Value of Information

Figure 9.38 shows a decision tree concerning a choice between two mutual funds and putting
the money in the bank. It is left as an exercise to show that, given these values, the decision
that maximizes expected value is to buy the allocation fund and

E(D) = E(allocation fund) = $1190.

This is shown in Figure 9.38. Before making a decision, we often have the chance to consult
with an expert in the domain which the decision concerns. Suppose in the current decision

i
i

i
i

i
i

i
i

242 Chapter 9 Decision Analysis

D

Market

$1600

$300

$1050

.4

.1

Bank

Market

$1300

$700

.5

.4

.5

.1

Growth

Fund

Allocation

Fund

$1000

$1200

up

flat

down

up

flat

down

$1170

$1190

Figure 9.38 Buying the allocation fund maximizes expected value.

we can consult with an expert financial analyst who is perfect at predicting the market.
That is, if the market will go up, the analyst will say it will go up; if it will be flat, the
analyst will say it will be flat; and if it will go down, the analyst will say it will go down. We
should be willing to pay for this information, but not more than the information is worth.
Next, we show how to compute the expected value (worth) of this information, which is
called the expected value of perfect information.

9.7.1 Expected Value of Perfect Information

To compute the expected value of perfect information, we add another decision alternative,
which is to consult the perfect expert. Figure 9.39 shows the decision tree in Figure 9.38 with
that alternative added. Next, we show how the probabilities for that tree were obtained.
Because the expert is perfect, we have

P (Expert = says up | Market = up) = 1

P (Expert = says flat | Market = flat) = 1

P (Expert = says down | Market = down) = 1.

We therefore have

P (up | says up)

= P (says up | up)P (up)
P (says up | up)P (up)+P (says flat | up)P (flat)+P (says down | down)P (down)

=
1× .4

1× .4 + 0× .5 + 0× .1
= 1.

It is not surprising that this value is 1, as the expert is perfect. This value is the far right
and uppermost probability in the decision tree in Figure 9.39. It is left as an exercise to
compute the other probabilities and solve the tree. We see that

E(Consult Perfect Analyst) = $1345.

i
i

i
i

i
i

i
i

9.7 Value of Information 243

E

Market

$1600

$300

$1050

.4

.1

Bank

Market

$1300

$700

.5

.4

.5

.1

Growth

Fund

Allocation

Fund

$1000

$1200

up

flat

down

up

flat

down

$1170

$1190

up

D

Market

$1600

$300

$1050

1

0

Bank

Market

$1300

$700

0

1

0

0

Growth

Fund

Allocation

Fund

$1000

$1200

up

flat

down

up

flat

down

$1600

$1300

D

Market

$1600

$300

$1050

0

0

Bank

Market

$1300

$700

1

.4

.5

.1

Growth

Fund

Allocation

Fund

$1000

$1200

up

flat

down

up

flat

down

$1000

$1200

D

Market

$1600

$300

$1050

0

1

Bank

Market

$1300

$700

0

0

0

1

Growth

Fund

Allocation

Fund

$1000

$1200

up

flat

down

up

flat

down

$300

$700

up

Market

says up

.4

says flat

.5

says down

.1

$1600

$1200

$1050

$1345

Consult

Perfect Analyst

Figure 9.39 The maximum expected value without consulting the perfect expert is $1190,
while the expected value of consulting that expert is $1345.

i
i

i
i

i
i

i
i

244 Chapter 9 Decision Analysis

U

D

growth
allocation
bank

1170.00
1190.00
1050.00

Market

up
flat
down

40.0
50.0
10.0

Figure 9.40 The decision tree in Figure 9.38 represented as an influence diagram and solved
using Netica.

Recall that without consulting this analyst, the decision alternative that maximizes
expected utility is to buy the allocation fund and

E(D) = E(allocation fund) = $1190.

The difference between these two expected values is the expected value of perfect in-
formation (EVPI). That is,

EVPI = E(Consult Perfect Analyst)− E(D)

= $1345− $1190 = $155.

This is the most we should be willing to pay for the information. If we pay less than this
amount, we will have increased our expected value by consulting the expert, while if we pay
more, we will have decreased our expected value.

We showed decision trees in Figures 9.38 and 9.39 so that you could see how the expected
value of perfect information is computed. However, as is usually the case, it is much easier
to represent the decisions using influence diagrams. Figure 9.40 shows the decision tree in
Figure 9.38 represented as an influence diagram and solved using Netica. Figure 9.41 shows
the decision tree in Figure 9.39 represented as an influence diagram and solved using Netica.
We have added the conditional probabilities of the Expert node to that diagram. (Recall
that Netica does not show conditional probabilities.) Notice that we can obtain the EVPI
directly from the values listed at decision node E in the influence diagram in Figure 9.41.
That is,

EVPI = E(consult)− E(do not consult)

= $1345− $1190 = $155.

9.7.2 Expected Value of Imperfect Information

Real experts and tests ordinarily are not perfect. Rather, they are only able to give estimates
that are often correct. Let’s say we have a financial analyst who has been predicting market
activity for 30 years and has had the following results:

1. When the market went up, the analyst said it would go up 80% of the time, would be
flat 10% of the time, and would go down 10% of the time.

i
i

i
i

i
i

i
i

9.8 Discussion and Further Reading 245

P(says up | up) = 1

P(says flat | up) = 0

P(says down | up) = 0

P(says up | flat) = 0

P(says flat | flat) = 1

P(says down | flat) = 0

P(says up | down) = 0

P(says flat | down) = 0

P(says down | down) = 1

Market

up
flat
down

40.0
50.0
10.0

Expert

says up
says flat
says down
not consulted

20.0
25.0
5.00
50.0

D

growth
allocation
bank

U
E

consult
do not consult

1345.00
1190.00

Figure 9.41 The decision tree in Figure 9.39 represented as an influence diagram and solved
using Netica.

2. When the market was flat, the analyst said it would go up 20% of the time, would be
flat 70% of the time, and would go down 10% of the time.

3. When the market went down, the analyst said it would go up 20% of the time, would
be flat 20% of the time, and would go down 60% of the time.

We therefore estimate the following conditional probabilities for this expert:

P (Expert = says up | Market = up) = .8

P (Expert = says flat | Market = up) = .1

P (Expert = says down | Market = up) = .1

P (Expert = says up | Market = flat) = .2

P (Expert = says flat | Market = flat) = .7

P (Expert = says down | Market = flat) = .1

P (Expert = says up | Market = down) = .2

P (Expert = says flat | Market = down) = .2

P (Expert = says down | Market = down) = .6.

Figure 9.42 shows the influence diagram in Figure 9.40 with the additional decision alterna-
tive that we can consult this imperfect expert. We also show the conditional probabilities
of the Expert node in that diagram. The increased expected value we realize by consulting
such an expert is called the expected value of imperfect information (EVII). It is
given by

EVII = E(consult)− E(do not consult)

= $1261.50− $1190 = $71.50.

This is the most we should pay for this expert’s information.

9.8 Discussion and Further Reading

The analysis methodology presented in this and the previous chapter for recommending
decisions is called normative decision analysis because the methodology prescribes how

i
i

i
i

i
i

i
i

246 Chapter 9 Decision Analysis

P(says up | up) = .8

P(says flat | up) = .1

P(says down | up) = .1

P(says up | flat) = .2

P(says flat | flat) = .7

P(says down | flat) = .1

P(says up | down) = .2

P(says flat | down) = .2

P(says down | down) = .6

Market

up
flat
down

40.0
50.0
10.0

Expert

says up
says flat
says down
not consulted

22.0
20.5
7.50
50.0

D

growth
allocation
bank

U
E

consult
do not consult

1261.50
1190.00

Figure 9.42 An influence diagram that enables us to compute the expected value of im-
perfect information.

people should make decisions rather than describes how people do make decisions. In 1954,
L. Jimmie Savage developed axioms concerning an individual’s preferences and beliefs. If
an individual accepts these axioms, Savage showed that the individual must prefer the deci-
sions obtained using decision analysis. Tversky and Kahneman [1981] conducted a number
of studies showing that individuals do not make decisions consistent with the methodology
of decision analysis. That is, their studies indicate that decision analysis is not a descriptive
theory. Kahneman and Tversky [1979] developed prospect theory to describe how people
actually make decisions when they are not guided by decision analysis. In 2002, Dan Kah-
neman won the Nobel Prize in economics for this effort. An alternative descriptive theory
of decision making is regret theory [Bell, 1982].

We only briefly introduced notions like risk preferences and sensitivity analysis. There
are many more considerations. For example, the exponential utility function is a constant
risk-aversion utility function because one’s total wealth does not affect the decision
obtained using the function. A decreasing risk-averse utility function can obtain a
different decision depending on one’s total wealth. In sensitivity analysis we can model
sensitivity to the values of the outcomes besides the probabilities. These matters and more
are discussed in texts such as [Clemen, 1996] and [Neapolitan and Jiang, 2007].

The previous three chapters have introduced Bayesian networks and influence diagrams.
These architectures have been applied successfully in a number of domains. A representative
list follows. The list is by no means meant to be exhaustive. Some of these applications use
dynamic Bayesian networks and dynamic influence diagrams, which will be introduced in
Section 12.2.

9.8.1 Academics

1. The Learning Research and Development Center at the University of Pittsburgh devel-
oped Andes [VanLehn et al., 2005], an intelligent tutoring system for physics. Andes
infers a student’s plan as the student works on a physics problem, and it assesses and
tracks the student’s domain knowledge over time.

2. Royalty et al. [2002] developed POET, which is an academic advising tool that models
the evolution of a student’s transcripts.

i
i

i
i

i
i

i
i

9.8 Discussion and Further Reading 247

9.8.2 Business and Finance

1. Demirer et al. [2007] developed a portfolio risk analyzer.

2. Lander and Shenoy [1999] modeled real options using an influence diagram, that also
provides a plan. That is, it not only recommends the decision alternative to make
today, but also recommends the decision to make in the future after new information
is obtained.

3. Kemmerer et al. [2002] developed an influence diagram for venture capital decision
making.

4. Data Digest (www.data-digest.com) modeled and predicted customer behavior in a
variety of business settings.

9.8.3 Capital Equipment

Knowledge Industries, Inc. (KI) (www.kic.com) developed a relatively large number of ap-
plications during the 1990s. Most of them are used in internal applications by their licensees
and are not publicly available. KI applications in capital equipment include locomotives,
gas-turbine engines for aircraft and land-based power production, the space shuttle, and
office equipment.

9.8.4 Computer Games

Valadares [2002] developed a computer game that models the evolution of a simulated world.

9.8.5 Computer Vision

1. The Reading and Leeds Computer Vision Groups developed an integrated traffic and
pedestrian model-based vision system. Information concerning this system can be
found at www.cvg.cs.rdg.ac.uk/˜imv.

2. Huang et al. [1994] developed a computer vision system that analyzed freeway traffic
using dynamic Bayesian networks.

3. Pham et al. [2002] developed a face detection system.

9.8.6 Computer Software

1. Microsoft Research (research.microsoft.com) has developed a number of applications.
Since 1995, Microsoft Office’s AnswerWizard has used a naive-Bayesian network to
select help topics based on queries. Also since 1995, there are about ten troubleshooters
in Windows that use Bayesian networks. See [Heckerman et al., 1994].

2. Burnell and Horvitz [1995] describe a system, which was developed by UT-Arlington
and American Airlines (AA), for diagnosing problems with legacy software, specifically
the Sabre airline reservation system used by AA. Given the information in a dump
file, this diagnostic system identifies which sequences of instructions may have led to
the system error.

www.data-digest.com
www.kic.com
www.cvg.cs.rdg.ac.uk/~imv

i
i

i
i

i
i

i
i

248 Chapter 9 Decision Analysis

9.8.7 Medicine

1. “Promedas is the biggest and fastest probabilistic medical diagnostic network in the
World based on medical expert knowledge, acquired from the literature by our med-
ical specialists. More than 3500 diagnoses and 47,000 network connections provide a
diagnosis in seconds.” - http://www. promedas.nl/. See the site just referenced for a
demonstration of Promedas, which is based on a Bayesian network.

2. Heckerman et al. [1992] describe Pathfinder, which is a system that assists commu-
nity pathologists with the diagnosis of lymph node pathology. Pathfinder has been
integrated with videodiscs to form the commercial system Intellipath.

3. Nicholson [1996] modeled the stepping patterns of the elderly to diagnose falls using
a dynamic Bayesian network.

4. Onisko [2001] describes Hepar II, which is a system for diagnosing liver disorders.

5. Ogunyemi et al. [2002] developed TraumaSCAN, which assesses conditions arising
from ballistic penetrating trauma to the chest and abdomen. It accomplishes this by
integrating three-dimensional geometric reasoning about anatomic likelihood of injury
with probabilistic reasoning about injury consequences.

6. Galán et al. [2002] created NasoNet, which is a system that performs diagnosis and
prognosis of nasopharyngeal cancer (cancer concerning the nasal passages).

9.8.8 Natural Language Processing

Koehler [1998] developed Symtext, a natural language understanding system for encod-
ing free text medical data. Related work was developed in [Meystre and Haug, 2005] and
[Christensen et al., 2009].

9.8.9 Planning

1. Dean and Wellman [1991] applied dynamic Bayesian networks to planning and control
under uncertainty.

2. Cozman and Krotkov [1996] developed quasi-Bayesian strategies for efficient plan gen-
eration.

9.8.10 Psychology

Glymour [2001] discusses applications to cognitive psychology.

9.8.11 Reliability Analysis

1. Torres-Toledano and Sucar [1998] developed a system for reliability analysis in power
plants.

2. The Centre for Software Reliability at Agena Ltd. (www.agena.co.uk) developed
TRACS (Transport Reliability Assessment and Calculation System), which is a tool
for predicting the reliability of military vehicles. The tool is used by the United
Kingdom’s Defense Research and Evaluation Agency (DERA) to assess vehicle reli-
ability at all stages of the design and development lifecycle. TRACS is described in
[Strutt and Hall, 2003]. The TRACS tool was built using the SERENE tool and the

http://www. promedas.nl/
www.agena.co.uk

i
i

i
i

i
i

i
i

Exercises 249

Hugin API (www.hugin.dk), and it was written in VB using the MSAccess database
engine. The SERENE method was used to develop the Bayesian network structure
and generate the parameters.

9.8.12 Scheduling

MITRE Corporation (www.mitre.org) developed a system for real-time weapons scheduling
for ship self-defense. Used by the United States Navy (NSWC-DD), the system can handle
multiple target, multiple weapon problems in under two seconds on a Sparc laptop.

9.8.13 Speech Recognition

1. Bilmes [2000] applied dynamic Bayesian multinets to speech recognition.

2. Nefian et al. [2002] developed a system for audio-visual speech recognition using
dynamic Bayesian networks.

9.8.14 Vehicle Control and Malfunction Diagnosis

1. Horvitz et al. [1992] describe Vista, which is a decision-theoretic system used at
NASA Mission Control Center in Houston. The system uses Bayesian networks to
interpret live telemetry, and it provides advice on the likelihood of alternative failures
of the space shuttle’s propulsion systems. It also considers time criticality and recom-
mends actions of the highest expected utility. Furthermore, the Vista system employs
decision-theoretic methods for controlling the display of information to dynamically
identify the most important information to highlight.

2. Morjaia et al. [1993] developed a system for locomotive diagnostics.

EXERCISES

Section 9.1

Exercise 9.1 Solve the decision tree in Figure 9.43.

Exercise 9.2 Solve the decision tree in Figure 9.44.

Exercise 9.3 Show the solved decision tree given the decision tree in Figure 9.3.

Exercise 9.4 Compute the conditional probabilities in the decision tree in Figure 9.6 from
the conditional probabilities given in Example 9.4.

Exercise 9.5 Show EU(D1) = $9800 and EU(D2) = $10,697 for the decision tree in Figure
9.8.

www.hugin.dk
www.mitre.org

i
i

i
i

i
i

i
i

250 Chapter 9 Decision Analysis

D

Y

100

200

.2

.8
d1

y1

y2

z3

X

Z

300

400

.2

.3

z1

x1

.7

x2

.3

z2

.5
150

300

d2

Figure 9.43 A decision tree.

Exercise 9.6 Consider Example 9.6. Suppose Leonardo has the opportunity to consult the
weather forecast before deciding on whether to take his umbrella. Suppose further that the
weather forecast says it will rain on 90% of the days it actually does rain and on 20% of the
days it does not rain. That is,

P (Forecast = rain|R = rain) = .9

P (Forecast = rain|R = no rain) = .2.

As before, suppose Leonardo judges that

P (R = rain) = .4.

Show the decision tree representing this problem instance assuming the utilities in Example
9.6. Solve that decision tree.

Exercise 9.7 Consider again Example 9.6. Assume that if it rains, there is a .7 probability
the suit will only need to go to the cleaners, and a .3 probability it will be ruined. Assume
again that

P (R = rain) = .4.

Assess your own utilities for this situation, show the resultant decision tree, and solve that
decision tree.

Exercise 9.8 Consider Example 9.8. Assume that your life expectancy from birth is 75
years. Assess your own QALEs for the situation described in that example, show the
resultant decision tree, and solve that decision tree.

Exercise 9.9 Suppose Jennifer is a young, potential capitalist with $1000 to invest. She
has heard glorious tales of many who have made fortunes in the stock market. So she decides

i
i

i
i

i
i

i
i

Exercises 251

E

Z

100

20

45

.4

.6

e1

e2

z1

z2

W

220

10

200

.8

.2

y1

y2

w1

w2

X

x1

x2

3

.7

D V

190

5

.9

.1

v1

v2

d1

150

d2

d3

Y

.1

.9

Figure 9.44 A decision tree with two decisions.

to do one of three things with her $1000. (1) She could buy an option on Techjunk that
would allow her to buy 1000 shares of Techjunk for $22 a share in one month. (2) She could
use the $1000 to buy shares of Techjunk. (3) She could leave the $1000 in the bank earning
.07 annually. Currently, Techjunk is selling for $20 a share. Suppose further she feels there
is a .5 chance the NASDAQ will be at 2000 in two months and a .5 chance it will be at
2500. If it is at 2000, she feels there is a .3 chance Techjunk will be at $23 a share and a .7
chance it will be at $15 a share. If the NASDAQ is at 2500, she feels there is a .7 chance
Techjunk will be at $26 a share and a .3 chance it will be $20 a share. Show a decision tree
that represents this decision, and solve that decision tree.

Let P (NASDAQ = 2000) = p and P (NASDAQ = 2500) = 1 − p. Determine the
maximal value of p for which the decision would be to buy the option. Is there any value of
p for which the decision would be to buy the stock?

Exercise 9.10 This exercise is based on an example in [Clemen, 1996]. In 1984, Penzoil
and Getty Oil agreed to a merger. However, before the deal was closed, Texaco offered Getty
a better price. So Gordon Getty backed out of the Penzoil deal and sold to Texaco. Penzoil
immediately sued, won the case, and was awarded $11.1 billion. A court order reduced the
judgment to $2 billion, but interest and penalties drove the total back up to $10.3 billion.
James Kinnear, Texaco’s chief executive officer, said he would fight the case all the way
up to the U.S. Supreme Court because, he argued, Penzoil had not followed Security and
Exchange Commission regulations when negotiating with Getty. In 1987, just before Penzoil
was to begin filing liens against Texaco, Texaco offered to give Penzoil $2 billion to settle

i
i

i
i

i
i

i
i

252 Chapter 9 Decision Analysis

the entire case. Hugh Liedke, chairman of Penzoil, indicated that his advisors told him a
settlement between $3 billion and $5 billion would be fair.

What should Liedke do? Two obvious choices are (1) he could accept the $2 billion or
(2) he could turn it down. Let’s say that he is also considering counteroffering $5 billion.
If he does, he judges that Texaco will either accept the counteroffer with probability .17,
refuse the counteroffer with probability .5, or counter back in the amount of $3 billion with
probability .33. If Texaco does counter back, Liedke will then have the decision of whether
to refuse or accept the counteroffer. Liedke assumes that if he simply turns down the $2
billion with no counteroffer, if Texaco refuses his counteroffer, or if he refuses their return
counteroffer, the matter will end up in court. If it does go to court, he judges that there is
.2 probability Penzoil will be awarded $10.3 billion, a .5 probability they will be awarded
$5 billion, and a .3 probability they will get nothing.

Show a decision tree that represents this decision, and solve that decision tree.

What finally happened? Liedke simply refused the $2 billion. Just before Penzoil began
to file liens on Texaco’s assets, Texaco filed for protection from creditors under Chapter 11
of the federal bankruptcy code. Penzoil then submitted a financial reorganization plan on
Texaco’s behalf. Under the plan, Penzoil would receive about $4.1 billion. Finally, the two
companies agreed on $3 billion as part of Texaco’s financial reorganization.

Section 9.2

Exercise 9.11 Represent the problem instance in Exercise 9.6 with an influence diagram.
Hand solve the influence diagram. Using Netica or some other software package, construct
and solve the influence diagram.

Exercise 9.12 Represent the problem instance in Exercise 9.7 with an influence diagram.
Hand solve the influence diagram. Using Netica or some other software package, construct
and solve the influence diagram.

Exercise 9.13 Represent the problem instance in Exercise 9.9 with an influence diagram.
Hand solve the influence diagram. Using Netica or some other software package, construct
and solve the influence diagram.

Exercise 9.14 Represent the problem instance in Exercise 9.10 with an influence diagram.
Hand solve the influence diagram. Using Netica or some other software package, construct
and solve the influence diagram.

Exercise 9.15 After Example 9.23, we noted that it was not surprising that the decision
alternative that maximizes expected utility is to do the CT scan because that scan has no
cost. Suppose instead that there is a financial cost of $1000 involved in doing the scan. Let’s
say the decision maker decides $1000 is equivalent to .01 years of life. Using Netica or some
other software package, construct an influence diagram representing this problem instance,
and determine whether in this case the decision alternative that maximizes expected utility
is still to do the CT scan.

i
i

i
i

i
i

i
i

Exercises 253

Section 9.3

Exercise 9.16 Using the technique illustrated in Example 9.27, assess your personal risk
tolerance r.

Exercise 9.17 Using the value of r assessed in the previous exercise, determine the decision
that maximizes expected utility for the decision in Example 9.1.

Section 9.4

Exercise 9.18 Compute the variance of the decision alternatives for the decision in Exam-
ple 9.2. Plot risk profiles and cumulative risk profiles for the decision alternatives. Discuss
whether you find the variance or the risk profiles more helpful in determining the risk in-
herent in each alternative.

Exercise 9.19 Compute the variance of the decision alternatives for the decision in Exam-
ple 9.3. Plot risk profiles and cumulative risk profiles for the decision alternatives. Discuss
whether you find the variance or the risk profiles more helpful in determining the risk in-
herent in each alternative.

Exercise 9.20 Compute the variance of the decision alternatives for the decision in Exam-
ple 9.5. Plot risk profiles and cumulative risk profiles for the decision alternatives. Discuss
whether you find the variance or the risk profiles more helpful in determining the risk in-
herent in each alternative.

Section 9.5

Exercise 9.21 Does one of the decision alternatives in the decision tree in Figure 9.45
deterministically dominate? If so, which one?

Exercise 9.22 Does one of the decision alternatives in the decision tree in Figure 9.46
stochastically dominate? If so, which one? Create cumulative risk profiles for the decision
alternatives.

Section 9.6

Exercise 9.23 Suppose that currently Lucent is at $3 a share, and you feel there is a .6
probability it will be go down to $2 by the end of the month and a .4 probability it will go
up to $5. You have $3000 to invest, and you will either buy 1000 shares of Lucent or put
the money in the bank and earn a monthly interest rate of .004. Although you are fairly
confident of your assessment of the outcomes, you are not very confident of your assessment
of the probabilities. Let p be the probability Lucent will go down. Determine the largest
value of p for which you would decide to buy Lucent.

i
i

i
i

i
i

i
i

254 Chapter 9 Decision Analysis

D

A

$4

$3

.8

.2

d2

d1

B

$5

$6

.7

.3

a1

a2

b1

b2

C

$5

$4

.9

.1

c1

c2

d3

Figure 9.45 A decision tree.

D

A

$7

$3

.5

.2

d2

d1

B

$7

$3

.4

.3

a1

a3

b1

b3

a2
$5

.3

b2

.3
$5

Figure 9.46 A decision tree.

Exercise 9.24 Suppose you are in the same situation as in the previous exercise, except
you feel that the value of Lucent will be affected by the overall value of the NASDAQ in
one month. Currently, the NASDAQ is at 2300, and you assess that it will either be at
2000 or 2500 at the end of the month. You feel confident assessing the probabilities of
your stock going up dependent on whether the NASDAQ goes up or down, but you are
not confident assessing the probability of the NASDAQ going up or down. Specifically, you
feel the probability of Lucent going up if the NASDAQ goes up is .8 and the probability of
Lucent going up given the NASDAQ goes down is .3. Let p be the probability the NASDAQ
will go up. Determine the smallest value of p for which you would decide to buy Lucent.

Exercise 9.25 Suppose you are in the same situation as in the previous exercise, except
you are confident in your assessment of the probability of the NASDAQ going up, but you
are not confident in your assessment of the probabilities of your stock going up dependent
on whether the NASDAQ goes up or down. Specifically, you feel the probability that the
NASDAQ will go up is .7. Let p be the probability of Lucent going up given the NASDAQ
goes up, and let q be the probability of Lucent going up given the NASDAQ goes down. Do

i
i

i
i

i
i

i
i

Exercises 255

a two-way sensitivity analysis on p and q.

Section 9.7

Exercise 9.26 Suppose we have the decision tree in Figure 9.39, except the growth fund
will be at $1800, $1100, and $200 if the market is, respectively, up, flat, or down, while the
allocation fund will be at $1400, $1000, or $400.

1. Compute the expected value of perfect information by hand.

2. Model the problem instance as an influence diagram using Netica, and determine the
expected value of perfect information using that influence diagram.

Exercise 9.27 Suppose we have the same decision as in the previous example, except we
can consult an expert who is not perfect. Specifically, the expert’s accuracy is as follows:

P (Expert = says up | Market = up) = .7

P (Expert = says flat | Market = up) = .2

P (Expert = says down | Market = up) = .1

P (Expert = says up | Market = flat) = .1

P (Expert = says flat | Market = flat) = .8

P (Expert = says down | Market = flat) = .1.

Model the problem instance as an influence diagram using Netica, and determine the ex-
pected value of consulting the expert using that influence diagram.

Exercise 9.28 Consider the decision problem discussed in Exercise 9.10. Represent the
problem with an influence diagram using Netica, and, using that influence diagram, deter-
mine the EVPI concerning Texaco’s reaction to a $5 billion counteroffer.

Exercise 9.29 Recall Chapter 2, Exercise 6.18, in which Professor Neapolitan has the
opportunity to drill for oil on his farm in Texas. It costs $25,000 to drill. Suppose that if
he drills and oil is present, he will receive $100,000 from the sale of the oil. If only natural
gas is present, he will receive $30,000 from the sale of the natural gas. If neither is present,
he will receive nothing. The alternative to drilling is to do nothing, which would definitely
result in no profit, but he will not have spent the $25,000.

1. Represent the decision problem with an influence diagram, and solve the influence
diagram.

2. Now include a node for the test discussed in Exercise 6.18, and determine the expected
value of running the test.

i i

Chapter 10

Learning Probabilistic Model
Parameters

Until the early 1990s, the DAG in a Bayesian network was ordinarily hand-constructed by a
domain expert. Then the conditional probabilities were assessed by the expert, learned from
data, or obtained using a combination of both techniques. Eliciting Bayesian networks from
experts can be a laborious and difficult process in the case of large networks. As a result,
researchers developed methods that could learn the DAG from data. Furthermore, they
formalized methods for learning the conditional probabilities from data. In a Bayesian net-
work, the conditional probability distributions are called the parameters. In this chapter
we address the problem of parameter learning. We only discuss learning discrete parame-
ters. Neapolitan [2004] shows a method for learning the parameters in a Gaussian Bayesian
network. In a Bayesian network the DAG is called the structure. In Chapter 11 we discuss
structure learning.

10.1 Learning a Single Parameter

We can only learn parameters from data when the probabilities are relative frequencies,
which were discussed in Section 6.3.1. So, this discussion pertains only to such probabili-

i
i

i
i

i
i

i
i

258 Chapter 10 Learning Probabilistic Model Parameters

ties. Although the method is based on rigorous mathematical results obtained by modeling
an individual’s subjective belief concerning a relative frequency, the method itself is quite
simple. Here, we merely present the method. See [Neapolitan, 2004] for the mathematical
development. After presenting a method for learning the probability of a binomial ran-
dom variable, we extend the method to multinomial random variables. Finally, we provide
guidelines for articulating our prior beliefs concerning probabilities.

10.1.1 Binomial Random Variables

We illustrate learning with a sequence of examples.

Example 10.1 Recall the discussion concerning a thumbtack at the beginning of Section
6.3.1. We noted that a thumbtack could land on its flat end, which we call “heads,” or it
could land with the edge of the flat end and the point touching the ground, which we call
“tails.” Because the thumbtack is not symmetrical, we have no reason to apply the Principle
of Indifference and assign probabilities of .5 to both outcomes. So, we need data to estimate
the probability of heads. Suppose we toss the thumbtack 100 times, and it lands heads 65
of those times. Then the maximum likelihood estimate (MLE) is

P (heads) ≈ 65

100
= .65.

�

In general, if there are s heads in n trials, the MLE of the probability is

P (heads) ≈ s

n
.

Using the MLE seems reasonable when we have no prior belief concerning the probability.
However, it is not so reasonable when we do have prior belief. Consider the next example.

Example 10.2 Suppose you take a coin from your pocket, toss it 10 times, and it lands
heads all those times. Then using the MLE, we estimate

P (heads) ≈ 10

10
= 1.

After the coin landed heads 10 times, we would not bet as though we were certain that the
outcome of the 11th toss will be heads. So, our belief concerning the P (heads) is not the
MLE value of 1. Assuming we believe the coins in our pockets are fair, should we instead
maintain P (heads) = .5 after all 10 tosses landed heads? This might seem reasonable
for 10 tosses, but it does not seem so reasonable if 1000 straight tosses landed heads. At
some point we would start suspecting the coin was weighted to land heads. We need a
method that incorporates one’s prior belief with the data. The standard way to do this is
for the probability assessor to ascertain integers a and b such that the assessor’s experience
is equivalent to having seen the first outcome (heads, in this case) occur a times and the
second outcome occur b times in m = a+ b trials. Then the assessor’s prior probabilities are

P (heads) =
a

m
P (tails) =

b

m
. (10.1)

After observing s heads and t tails in n = s+ t trials, the assessor’s posterior probabilities
are

P (heads|s, t) =
a+ s

m+ n
P (tails|s, t) =

a+ t

m+ n
. (10.2)

�

i
i

i
i

i
i

i
i

10.1 Learning a Single Parameter 259

This posterior probability is called the maximum a posteriori probability (MAP).
Note that we have used the symbol = rather than ≈, and we have written the probability
as a conditional probability rather than as an estimate. The reason is that this is a Bayesian
technique, and Bayesians say that the value is their probability (belief) based on the data
rather than saying it is an estimate of a probability (relative frequency).

We developed Equalities 10.1 and 10.2 based on intuitive grounds. The following theorem
is a rigorous derivation of them.

Theorem 10.1 Suppose we are about to repeatedly toss a thumbtack (or perform any
repeatable experiment with two outcomes). Suppose further we assume exchangeability, and
we represent our prior belief concerning the probability of heads using a beta distribution
with parameters a and b. Then our prior probabilities are given by Equality 10.1, and after
observing s heads and t tails in n = s + t trials, our posterior probabilities are given by
Equality 10.2.
Proof. The proof can be found in [Neapolitan, 2004].

The preceding theorem assumes exchangeability. Briefly, the assumption of exchange-
ability, which was first developed by de Finetti in 1937, is that an individual assigns the
same probability to all sequences of the same length containing the same number of each
outcome. For example, the individual assigns the same probability to these two sequences
of heads (H) and tails (T):

H,T,H, T,H, T,H, T, T, T and H,T, T, T, T,H,H, T,H, T.

Furthermore, the individual assigns the same probability to any other sequence of 10 tosses
that has 4 heads and 6 tails.

Next, we show more examples. In these examples we only compute the probability of
the first outcome because the probability of the second outcome is uniquely determined by
it.

Example 10.3 Suppose you are going to repeatedly toss a coin from your pocket. Because
you would feel it highly probable that the relative frequency is around .5, you might feel
your prior experience is equivalent to having seen 50 heads in 100 tosses. Therefore, you
could represent your belief with a = 50 and b = 50. Then m = 50 + 50 = 100, and your
prior probability of heads is

P (heads) =
a

m
=

50

100
= .5.

After seeing 48 heads in 100 tosses, your posterior probability is

P (heads|48, 52) =
a+ s

m+ n
=

50 + 48

100 + 100
= .49.

The notation 48, 52 on the right of the conditioning bar in P (heads|48, 52) represents the
event that 48 heads and 52 tails have occurred. �

Example 10.4 Suppose you are going to repeatedly toss a thumbtack. Based on its struc-
ture, you might feel it should land heads about half the time, but you are not nearly so
confident as you were with the coin from your pocket. So, you might feel your prior experi-
ence is equivalent to having seen 3 heads in 6 tosses. Then your prior probability of heads
is

P (heads) =
a

m
=

3

6
= .5.

i
i

i
i

i
i

i
i

260 Chapter 10 Learning Probabilistic Model Parameters

After seeing 65 heads in 100 tosses, your posterior probability is

P (heads|65,35) =
a+ s

m+ n
=

3 + 65

6 + 100
= .64.

�

Example 10.5 Suppose you are going to sample individuals in the United States and de-
termine whether they brush their teeth. In this case, you might feel your prior experience
is equivalent to having seen 18 individuals brush their teeth out of 20 sampled. Then your
prior probability of brushing is

P (brushes) =
a

m
=

18

20
= .9.

After sampling 100 individuals and learning that 80 brush their teeth, your posterior prob-
ability is

P (brushes|80, 20) =
a+ s

m+ n
=

18 + 80

20 + 100
= .82.

�

You could feel that if we have complete prior ignorance as to the probability, we should
take a = b = 0. However, consider the next example.

Example 10.6 Suppose we are going to sample dogs and determine whether or not they
eat the potato chips we offer them. Because we have no idea whether a particular dog would
eat potato chips, we assign a = b = 0, which means m = 0 + 0 = 0. Because we cannot
divide a by m, we have no prior probability. Suppose next that we sample one dog, and
that dog eats the potato chips. Our probability of the next dog eating potato chips is now

P (eats|1, 0) =
a+ s

m+ n
=

0 + 1

0 + 1
= 1.

This belief is not very reasonable, because it means that we are certain that all dogs eat
potato chips. Owing to difficulties such as this and more rigorous mathematical results,
prior ignorance to a probability is usually modeled by taking a = b = 1, which means
m = 1 + 1 = 2. If we use these values instead, our posterior probability when the first
sampled dog was found to eat potato chips is given by

P (eats|1, 0) =
a+ s

m+ n
=

1 + 1

2 + 1
=

2

3
.

�

10.1.2 Multinomial Random Variables

The method just discussed readily extends to multinomial random variables. We have the
following theorem.

Theorem 10.2 Suppose we are about to repeatedly perform an experiment with k out-
comes x1, x2, . . . , xk. Suppose further we assume exchangeability, and we represent our
prior belief concerning the probability of the k outcomes using a Dirichlet distribution
with parameters a1, a2, . . . , ak. Then our prior probabilities are

P (x1) =
a1

m
P (x2) =

a2

m
· · · P (xk) =

ak
m
,

i
i

i
i

i
i

i
i

10.2 Learning Parameters in a Bayesian Network 261

where m = a1 + a2 + · · · + ak. After seeing x1 occur s1 times, x2 occur s2 times, . . . , and
xn occur sn times in n = s1 + s2 + · · ·+ sk trials, our posterior probabilities are as follows:

P (x1|s1, s2, . . . , sk) =
a1 + s1

m+ n

P (x2|s1, s2, . . . , sk) =
a2 + s2

m+ n

...

P (xk|s1, s2, . . . , sk) =
ak + sk
m+ n

.

Proof. The proof can be found in [Neapolitan, 2004].

Notice that in Theorem 10.1 we represented our belief using a beta distribution, and in
Theorem 10.2 we used a Dirichlet distribution. The beta distribution is the same as the
Dirichlet distribution when there are only two parameters, and Theorem 10.1 is a special
case of Theorem 10.2.

We ascertain the numbers a1, a2, . . . , ak by equating our experience to having seen the
first outcome occur a1 times, the second outcome occur a2 times, . . . , and the last outcome
occur ak times.

Example 10.7 Suppose we have an asymmetrical, six-sided die, and we have little idea of
the probability of each side coming up. However, it seems that all sides are equally likely.
So, we assign

a1 = a2 = · · · = a6 = 3.

Then our prior probabilities are as follows:

P (1) = P (2) = · · · = P (6) =
ai
n

=
3

18
= .16667.

Suppose next we throw the die 100 times, with the following results:

Outcome Number of Occurrences
1 10
2 15
3 5
4 30
5 13
6 27

We then have

P (1|10, 15, 5, 30, 13, 27) =
a1 + s1

m+ n
=

3 + 10

18 + 100
= .110

P (2|10, 15, 5, 30, 13, 27) =
a2 + s2

m+ n
=

3 + 15

18 + 100
= .153.

It is left as an exercise to compute the remaining four probabilities. �

10.2 Learning Parameters in a Bayesian Network

The method for learning parameters in a Bayesian network follows readily from the method
for learning a single parameter. We illustrate the method with binomial variables. It
extends readily to the case of multinomial variables (see [Neapolitan, 2004]). After showing
the method, we discuss equivalent sample sizes.

i
i

i
i

i
i

i
i

262 Chapter 10 Learning Probabilistic Model Parameters

X Y

a
11

 = 1

b
11

 = 1
a

21
 = 1

b
21

 = 1

a
22

 = 1

b
22

 = 1

P(x
1
) = a

11
/ (a

11
+b

11
) =1/2 P(y

1
| x

1
) = a

21
/ (a

21
+b

21
) = 1/2

P(y
1

| x
2
) = a

22
/ (a

22
+b

22
) = 1/2

(a)

X Y

a
11

 = 7

b
11

 = 5
a

21
 = 6

b
21

 = 2

a
22

 = 3

b
22

 = 3

P(x
1
) = a

11
/ (a

11
+b

11
) = 7/12 P(y

1
| x

1
) = a

21
/ (a

21
+b

21
) = 3/4

P(y
1

| x
2
) = a

22
/ (a

22
+b

22
) = 1/2

(b)

Figure 10.1 A Bayesian network for parameter learning appears in (a); the updated network
based on the data in Figure 10.2 appears in (b).

10.2.1 Procedure for Learning Parameters

Consider the two-node network in Figure 10.1 (a). We call such a network a Bayesian
network for parameter learning. For each probability in the network, there is a pair
(aij , bij). The i indexes the variable; the j indexes the value of the parent(s) of the variable.
For example, the pair (a11, b11) is for the first variable (X) and the first value of its parent
(in this case there is a default of one parent value because X has no parent). The pair
(a21, b21) is for the second variable (Y) and the first value of its parent, namely x1. The
pair (a22, b22) is for the second variable (Y) and the second value of its parent, namely x2.
We have attempted to represent prior ignorance as to the value of all probabilities by taking
aij = bij = 1. We compute the prior probabilities using these pairs, just as we did when we
were considering a single parameter. We have the following:

P (x1) =
a11

a11 + b11
=

1

1 + 1
=

1

2

P (y1|x1) =
a21

a21 + b21
=

1

1 + 1
=

1

2

P (y1|x2) =
a22

a22 + b22
=

1

1 + 1
=

1

2
.

When we obtain data, we use an (sij , tij) pair to represent the counts for the ith variable
when the variable’s parents have their jth value. Suppose we obtain the data in Figure 10.2.
The values of the (sij , tij) pairs are shown in that figure. We have that s11 = 6 because
x1 occurs six times, and t11 = 4 because x2 occurs four times. Of the six times that x1

occurs, y1 occurs five times and y2 occurs one time. So, s21 = 5 and t21 = 1. Of the
four times that x2 occurs, y1 occurs two times and y2 occurs two times. So, s22 = 2 and
t22 = 2. To determine the posterior probability distribution based on the data, we update
each conditional probability with the counts relative to that conditional probability. Because
we want an updated Bayesian network, we recompute the values of the (aij , bij) pairs. We
therefore have the following:

i
i

i
i

i
i

i
i

10.2 Learning Parameters in a Bayesian Network 263

Case X Y

 1 x
1

y
1

 2 x
1

y
1

 3 x
1

y
1

 4 x
1

y
1

 5 x
1

y
1

 6 x
1

y
2

 7 x
2

y
1

 8 x
2

y
1

 9 x
2

y
2

10 x
2

y
2

s
11

= 6

t
11

= 4

s
21

= 5

t
21

= 1

s
22

= 2

t
22

= 2

Figure 10.2 Data on 10 cases.

a11 = a11 + s11 = 1 + 6 = 7

b11 = b11 + t11 = 1 + 4 = 5

a21 = a21 + s21 = 1 + 5 = 6

b21 = b21 + t21 = 1 + 1 = 2

a22 = a22 + s22 = 1 + 2 = 3

b22 = b22 + t22 = 1 + 2 = 3.

We then compute the new values of the parameters:

P (x1) =
a11

a11 + b11
=

7

7 + 5
=

7

12

P (y1|x1) =
a21

a21 + b21
=

6

6 + 2
=

3

4

P (y1|x2) =
a22

a22 + b22
=

3

3 + 3
=

1

2
.

The updated network is shown in Figure 10.1 (b).

10.2.2 Equivalent Sample Size

There is a problem with the way we represented prior ignorance in the preceding subsection.
Although it seems natural to set aij = bij = 1 to represent prior ignorance of all the
conditional probabilities, such assignments are not consistent with the metaphor we used
for articulating these values. Recall that we said the probability assessor is to choose values
of a and b such that the assessor’s experience is equivalent to having seen the first outcome
occur a times in a+ b trials. Therefore, if we set a11 = b11 = 1, the assessor’s experience is
equivalent to having seen x1 occur one time in two trials. However, if we set a21 = b21 = 1,
the assessor’s experience is equivalent to having seen y1 occur one time out of the two times
x1 occurred. This is not consistent. First, we are saying x1 occurred once; then we are
saying it occurred twice. Aside from this inconsistency, we obtain odd results if we use
these priors.

i
i

i
i

i
i

i
i

264 Chapter 10 Learning Probabilistic Model Parameters

X Y

a
11

 = 1

b
11

 = 1

a
21

 = 1

b
21

 = 1

a
22

 = 1

b
22

 = 1

P(y
1
) = a

11
/ (a

11
+b

11
) = 1/2P(x

1
| y

1
) = a

21
/ (a

21
+b

21
) = 1/2

P(x
1

| y
2
) = a

22
/ (a

22
+b

22
) = 1/2

(a)

X Y

a
11

 = 8

b
11

 = 4

a
21

 = 6

b
21

 = 3

a
22

 = 2

b
22

 = 3

P(y
1
) = a

11
/ (a

11
+b

11
) = 2/3P(x

1
| y

1
) = a

21
/ (a

21
+b

21
) = 2/3

P(x
1

| y
2
) = a

22
/ (a

22
+b

22
) = 2/5

(b)

Figure 10.3 A Bayesian network initialized for parameter learning appears in (a); the
updated network based on the data in Figure 10.2 appears in (b).

Consider the Bayesian network for parameter learning in Figure 10.3 (a). If we update
that network with the data in Figure 10.2, we obtain the network in Figure 10.3 (b). The
DAG in Figure 10.3 (a) is Markov equivalent to the one in Figure 10.1 (b). It seems that if we
represent the same prior beliefs with equivalent DAGs, then the posterior distributions based
on data should be the same. In this case we have attempted to represent prior ignorance
as to all probabilities with the networks in Figure 10.1 (a) and Figure 10.3 (a). So, the
posterior distributions based on the data in Figure 10.2 should be the same. However, from
the Bayesian network in Figure 10.1 (b), we have

P (x1) =
7

12
= .583,

whereas from the Bayesian network in Figure 10.3 (b) we have

P (x1) = P (x1|y1)P (y1) + P (x1|y2)P (y2)

=
2

3
× 2

3
+

2

5
× 1

3
= .578.

We see that we obtain different posterior probabilities. Such results are not only odd, but
unacceptable because we have attempted to model the same prior belief with the Bayesian
networks in Figures 10.1 (a) and 10.3 (a), but we end up with different posterior beliefs.

We can eliminate this difficulty by using a prior equivalent sample size. That is, we
specify values of aij and bij that could actually occur in a prior sample that exhibit the
conditional independencies entailed by the DAG. For example, given the network X → Y ,
if we specify that a21 = b21 = 1, this means our prior sample must have x1 occurring two
times. So, we need to specify a11 = 2. Similarly, if we specify that a22 = b22 = 1, this
means that our prior sample must have x2 occurring two times. So, we need to specify
b11 = 2. Note that we are not saying we actually have a prior sample. We are saying that
the probability assessor’s beliefs are represented by a prior sample. Figure 10.4 shows prior
Bayesian networks using equivalent sample sizes. Notice that the values of aij and bij in
these networks represent the following prior sample:

i
i

i
i

i
i

i
i

10.2 Learning Parameters in a Bayesian Network 265

X Y

a
11

 = 2

b
11

 = 2

a
21

 = 1

b
21

 = 1

a
22

 = 1

b
22

 = 1

P(y
1
) = a

11
/ (a

11
+b

11
) =1/2P(x

1
| y

1
) = a

21
/ (a

21
+b

21
) = 1/2

P(x
1

| y
2
) = a

22
/ (a

22
+b

22
) = 1/2

(b)

X Y

a
11

 = 2

b
11

 = 2

a
21

 = 1

b
21

 = 1

a
22

 = 1

b
22

 = 1

P(x
1
) = a

11
/ (a

11
+b

11
) = 1/2 P(y

1
| x

1
) = a

21
/ (a

21
+b

21
) = 1/2

P(y
1

| x
2
) = a

22
/ (a

22
+b

22
) = 1/2

(a)

Figure 10.4 Bayesian networks for parameter learning containing prior equivalent sample
sizes.

Case X Y
1 x1 y1

2 x1 y2

3 x2 y1

4 x2 y2

It is left as an exercise to show that if we update both the Bayesian networks in Figure
10.4 using the data in Figure 10.2, we obtain the same posterior probability distribution.
This result is true, in general, when we use a prior equivalent sample size; the proof can
be found in [Neapolitan, 2004]. Presently, we give a formal definition of a prior equivalent
sample size.

Definition 10.1 Suppose we specify a Bayesian network for parameter learning in the case
of binomial variables. If there is a number α such that for all i and j we have that

aij + bij = P (paij)× α,

where paij denotes the jth instantiation of the parents of the ith variable, then we say the
network has prior equivalent sample size α.�

This definition is a bit hard to grasp by itself. The following theorem, whose proof can
be found in [Neapolitan, 2004], yields a way to represent uniform prior distributions, which
is often what we want to do.

Theorem 10.3 Suppose we specify a Bayesian network for parameter learning in the case
of binomial variables and assign for all i and j

aij = bij =
α

2qi

where N is a positive integer and qi is the number of instantiations of the parents of the ith
variable. Then the resultant Bayesian network has equivalent sample size α, and the joint
probability distribution in the Bayesian network is uniform.

i
i

i
i

i
i

i
i

266 Chapter 10 Learning Probabilistic Model Parameters

X
1

X
2

F
11

F
21

F
22

beta(f
11

; 2,2) beta(f
21

; 1,1) beta(f
22

; 1,1)

X
1

X
2

P(X
1
 = 1) = 1/2

P(X
2
 = 1|X

1
 = 2) = 1/2

P(X
2
 = 1|X

1
 = 1) = 1/2

(a)

(b)

X
1

X
2

F
11

F
21

F
22

beta(f
11

; 6,3) beta(f
21

; 7/2,5/2) beta(f
22

; 3/2,3/2)

X
1

X
2

P(X
1
 = 1) = 2/3 P(X

2
 = 1|X

1
 = 1) = 7/12

P(X
2
 = 1|X

1
 = 2) = 1/2

(c)

(d)

Figure 10.5 The network in (a) has been updated to the network in (c) using a first pass
of the EM Algorithm.

Figure 10.4 (a) shows a Bayesian network for parameter learning obtained using Theorem
10.3 with α = 4.

We developed the method for learning parameters in a Bayesian network in the case of
binomial variables. It extends readily to multinomial variables. See [Neapolitan, 2004] for
that extension.

10.3 Learning Parameters with Missing DataF

So far we have considered datasets in which every value of every variable is recorded in every
case. Next, we consider the case where some data items might be omitted. How might they
be omitted? A common way, and indeed a way that is relatively easy to handle, is that they
are simply random omissions due to recording problems or some similar error. We present
that case.

First, we need to provide more formal notation than that used so far. Recall that in
Theorem 10.1 we said that we were representing our prior belief concerning the probability
of heads using a beta distribution with parameters a and b. Formally, this means we are
considering the probability of heads a random variable F , and that this random variable
has a beta distribution with parameters a and b. The beta density function is as follows:

beta(f : a, b) =
Γ(a+ b)

Γ(a)Γ(b)
fa−1(1− f)b−1 0 ≤ f ≤ 1.

The formal statement of Theorem 10.1 is that if

ρ(f) = beta(f : a, b)

then
ρ(f |D) = beta(f : a+ s, b+ t), (10.3)

where the data D consists of s occurrences of the first alternative and t occurrences of the
second alternative.

Now we show how to update parameters based on data containing data items missing at
random. Before discussing how to update based on such data, let’s review how we update

i
i

i
i

i
i

i
i

10.3 Learning Parameters with Missing DataF 267

Table 10.1 Data on 5 Cases

Case X1 X2

1 1 1
2 1 1
3 1 1
4 1 2
5 2 2

Table 10.2 Data on 5 Cases with Some Data Items Missing

Case X1 X2

1 1 1
2 1 ?
3 1 1
4 1 2
5 2 ?

when no data items are missing. Figure 10.5 (a) shows a Bayesian network where now we
have explicitly included random variables for the parameters. Such a network is called an
augmented Bayesian network. We denote the set of all random variables Fij in the
network as F. Suppose we want to update that network with the data D in Table 10.1.
Let s21 be the number of cases that have X1 equal to 1 and X2 equal to 1, and t21 be the
number of cases that have X1 equal to 1 and X2 equal to 2. We then have that

s21 = 3

t21 = 1.

Therefore,

ρ(f21|D) = beta(f21; a21 + s21, b21 + t21)

= beta(f21; 1 + 3, 1 + 1)

= beta(f21; 4, 2).

Suppose next that we want to update the network in Figure 10.5 (a) with the data D
in Table 10.2. These data contain missing data items. We do not know the value of X2

for cases 2 and 5. It seems reasonable to estimate the value of X2 in these cases using
P (X2 = 1|X1 = 1). That is, because this probability equals 1/2, we say X2 has a 1/2

Table 10.3 Estimates of Missing Values

Case X1 X2 # Occurrences
1 1 1 1
2 1 1 1/2
2 1 2 1/2
3 1 1 1
4 1 2 1
5 2 1 1/2
5 2 2 1/2

i
i

i
i

i
i

i
i

268 Chapter 10 Learning Probabilistic Model Parameters

occurrence of 1 in each of cases 2 and 5. So we replace the data D in Table 10.2 by the data
D′ in Table 10.3. We then update our density functions using the number of occurrences
listed in Table 10.3. So we have

s′21 = 1 + 1
2 + 1 = 5

2 (10.4)

t′21 = 1
2 + 1 = 3

2 ,

s′22 = 1
2 (10.5)

t′22 = 1
2 ,

where s′21, t′21, s′22, and t′22 denote the counts in data D′ (shown in Table 10.3). We then
have

ρ(f21|D′) = beta(f21; a21 + s′21, b21 + t′21)

= beta
(
f21; 1 + 5

2 , 1 + 3
2

)
= beta

(
f21; 7

2 ,
5
2

)
and

ρ(f22|D′) = beta(f21; a22 + s′22, b22 + t′22)

= beta
(
f21; 1 + 1

2 , 1 + 1
2

)
= beta

(
f21; 3

2 ,
3
2

)
.

The updated network is shown in Figure 10.5 (c).
If we let Sij and Tij be random variables denoting the counts in the complete dataset,

the method just outlined determines the expected value of these counts relative to the joint
probability distribution of X1and X2 conditional on the data and on the variables in F
having their prior expected values. That is, if we set

f11 =
2

2 + 2
=

1

2

f21 =
1

1 + 1
=

1

2

f21 =
1

1 + 1
=

1

2

then

f = {f11, f21, f22} = {1/2, 1/2, 1/2}

and

s′21 = E(S21|D, f) =
5∑

h=1

1× P (X
(h)
1 = 1, X

(h)
2 = 1|D, f) (10.6)

=
5∑

h=1

P (X
(h)
1 = 1, X

(h)
2 = 1|x(h), f)

=
5∑

h=1

P (X
(h)
1 = 1, X

(h)
2 = 1|x(h)

1 , x
(h)
2 , f)

= 1 + 1
2 + 1 + 0 + 0 = 5

2 .

i
i

i
i

i
i

i
i

10.3 Learning Parameters with Missing DataF 269

In the preceding equality, X(h) = {X(h)
1 , X

(h)
2 } represents the value of the hth data item.

Similarly,
t′21 = E(T21|D, f) = 0 + 1

2 + 0 + 1 + 0 = 3
2 .

Furthermore,

s′22 = E(S22|D, f) =
5∑

h=1

1× P (X
(h)
1 = 1, X

(h)
2 = 2|D, f)

=
5∑

h=1

P (X
(h)
1 = 1, X

(h)
2 = 2|x(h), f)

=
5∑

h=1

P (X
(h)
1 = 1, X

(h)
2 = 2|x(h)

1 , x
(h)
2 , f)

= 0 + 0 + 0 + 0 + 1
2 = 1

2

and
t′22 = E(T22|D, f) = 0 + 0 + 0 + 0 + 1

2 = 1
2 .

Note that these are the same values obtained in Equalities 10.4 and 10.5.
Using these expected values to estimate our density functions seems reasonable. However,

note that our estimates are based only on our prior sample. They are not based on the
data D. That is, we say X2 has a 1/2 occurrence of 1 in each of cases 2 and 5 because
P (X2 = 1|X1 = 1) = 1/2 according to our prior sample. However, the data D prefers the
event X1 = 1, X2 = 1 to the event X1 = 1, X2 = 2 because the former event occurs twice
while the latter event occurs only once. To incorporate the data D in our estimates, we
can now repeat the computation in Expression 10.6 using the probability distribution in the
updated network (Figures 10.5 (c) and (d)). That is, if we set

f11 =
6

6 + 3
=

2

3

f21 =
7/2

7/2 + 5/2
=

7

12

f21 =
3/2

3/2 + 3/2
=

1

2

then
f = {f11, f21, f22} = {2/3, 7/12, 1/2}

and

s′21 = E(S21|D, f) =
5∑

h=1

1× P (X
(h)
1 = 1, X

(h)
2 = 1|D, f)

=
5∑

h=1

P (X
(h)
1 = 1, X

(h)
2 = 1|x(h), f)

=
5∑

h=1

P (X
(h)
1 = 1, X

(h)
2 = 1|x(h)

1 , x
(h)
2 , f ′)

= 1 + 7
12 + 1 + 0 + 0 = 2 7

12 .

Similarly,
t′21 = E(T21|D, f) = 0 + 5

12 + 0 + 1 + 0 = 1 5
12 .

i
i

i
i

i
i

i
i

270 Chapter 10 Learning Probabilistic Model Parameters

We recompute s′22 and t′22 in the same manner.
Clearly, we can keep repeating the previous two steps. Suppose we reiterate these steps,

let s
(v)
ij and t

(v)
ij be the values of s′ij and t′ij after the vth iteration, and take the

lim
v→∞

fij = lim
v→∞

aij + s
(v)
ij

aij + s
(v)
ij + bij + t

(v)
ij

.

Then under certain regularity conditions, the limit is a value of f that locally maximizes
ρ(f|D).1

The procedure we described is an instance of the EM Algorithm ([Dempster et al., 1977];
[McLachlan and Krishnan, 2008]). In this algorithm, the step in which we recompute s′ij
and t′ij is called the expectation step, and the step in which we recompute the value of f
is called the maximization step because we are approaching a local maximum.

The value of f that maximizes ρ(f|D) is called the maximum a posteriori probability
(MAP) value of f. We want to arrive at this value rather than at a local maximum. After
presenting the algorithm, we discuss a way to avoid a local maximum.

Algorithm 10.1 EM-MAP-Determination

Input: Binomial augmented Bayesian network (G,F, ρ) and data D
containing some incomplete data items.
Output: Estimate f of the MAP value of the parameter set F.

Procedure MAP ((G,F, ρ), D, var f)
for i = 1 to n

for j = 1 to qi
assign fij a value in the interval (0, 1);

repeat k times // the number of iterations
for i = 1 to n // expectation step

for j = 1 to qi
s′ij = E(Sij |D, f) =

∑
h P (X

(h)
i = 1, paij |x(h), f);

t′ij = E(Tij |D, f) =
∑
h P (X

(h)
i = 2, paij |x(h), f);

endfor
endfor
for i = 1 to n // maximization step

for j = 1 to qi

fij =
aij + s′ij

aij + s′ij + bij + t′ij
;

endfor
endfor

endrepeat

Note that in the algorithm we initialized the algorithm by saying “assign fij a value in
the interval (0, 1)” rather than setting fij = aij/ (aij + bij) as we did in our illustration.
We want to end up with the MAP value of f; however, in general, we could end up with a
local maximum when starting with any particular configuration of f ′. So we do not start at
only one particular configuration. Rather, we use multiple restarts of the algorithm. The
following is a multiple-restart strategy discussed in [Chickering and Heckerman, 1997]. We

1The maximizing values actually depend on the coordinate systems used to express the parameters. The
ones given here correspond to the canonical coordinate system for the multinomial distribution (see, e.g.,
[Bernardo and Smith, 1994]).

i
i

i
i

i
i

i
i

Exercises 271

sample 64 prior configurations of the variables in F according to a uniform distribution.
By a configuration of the variables, we mean an assignment of values to the variables.
Next, we perform one expectation and one maximization step, and we retain the 32 initial
configurations that yielded the 32 values of f with the largest values of ρ(f|D). Then we
perform two expectation and maximization steps, and we retain 16 initial configurations
using this same rule. We continue in this manner, in each iteration doubling the number
of expectation-maximization steps, until only one configuration remains. You may wonder
how we could determine which values of f had the largest values of ρ(f|D) when we do not
know this density function. For any value of f we have

ρ(f|D) = αρ(D|f)ρ(f),

which means we can determine whether ρ(f ′|D) or ρ(f ′′|D) is larger by comparing ρ(D|f ′)ρ(f ′)
and ρ(D|f ′′)ρ(f ′′). To compute ρ(D|f)ρ(f), we simply calculate ρ(f) and determine ρ(D|f) =∏M
h=1 P (x(h)|f) using a Bayesian network inference algorithm.
The maximum likelihood estimate (MLE) value of f is the value such that P (D|f) is

a maximum. Algorithm 10.1 can be modified to produce the ML value. We simply update
as follows:

fij =
s′ij

s′ij + t′ij
.

A parameterized EM algorithm, which convergences faster, appears in [Bauer et al., 1997].
The EM Algorithm is not the only method for handling missing data items. Other methods
include Monte Carlo techniques, in particular Gibb’s sampling, which is discussed in Section
11.2.6.2.

EXERCISES

Section 10.1

Exercise 10.1 For some two-outcome experiment that you can repeat indefinitely (such as
the tossing of a thumbtack), determine the number of occurrences a and b of each outcome
that you feel your prior experience is equivalent to having seen. Determine the probability
of the first outcome.

Exercise 10.2 Assume that you feel your prior experience concerning the relative frequency
of smokers in a particular bar is equivalent to having seen 14 smokers and 6 nonsmokers.

1. You then decide to poll individuals in the bar and ask them if they smoke. What is
your probability of the first individual you poll being a smoker?

2. Suppose that after polling 10 individuals, you obtain these data (the value 1 means
the individual smokes and 2 means the individual does not smoke):

{1, 2, 2, 2, 2, 1, 2, 2, 2, 1}.

What is your probability that the next individual you poll is a smoker?

3. Suppose that after polling 1000 individuals (it is a big bar), you learn that 312 are
smokers. What is your probability that the next individual you poll is a smoker? How
does this probability compare to your prior probability?

i
i

i
i

i
i

i
i

272 Chapter 10 Learning Probabilistic Model Parameters

a
11

 = 1

b
11

 = 1

a
21

 = .5

b
21

 = .5

a
22

 = .5

b
22

 = .5

P(x
1
) = a

11
/ (a

11
+b

11
) =1/2 P(y

1
| x

1
) = a

21
/ (a

21
+b

21
) = 1/2

P(y
1
| x

2
) = a

22
/ (a

22
+b

22
) = 1/2

X Y

Za
31

 = .25

b
31

 = .25

a
32

 = .25

b
32

 = .25

a
33

 = .25

b
33

 = .25

a
34

 = .25

b
34

 = .25

P(z
1

| y
1
,x

1
) = a

31
/ (a

31
+b

31
) = 1/2

P(z
1

| y
1
,x

2
) = a

32
/ (a

32
+b

32
) = 1/2

P(z
1

| y
2
,x

1
) = a

33
/ (a

33
+b

33
) = 1/2

P(z
1

| y
2
,x

2
) = a

34
/ (a

34
+b

34
) = 1/2

Figure 10.6 A Bayesian network for parameter learning.

Exercise 10.3 Find a rectangular block (not a cube) and label the sides. Determine values
of a1, a2, . . . , a6 that represent your prior probability concerning each side coming up when
you throw the block.

1. What is your probability of each side coming up on the first throw?

2. Throw the block 20 times. Compute your probability of each side coming up on the
next throw.

Exercise 10.4 Suppose that you are going to sample individuals who have smoked two
packs of cigarettes or more daily for the past 10 years. You will determine whether each in-
dividual’s systolic blood pressure is ≤ 100, 101–120, 121–140, 141–160, or ≥ 161. Determine
values of a1, a2, . . . , a5 that represent your prior probability of each blood pressure range.

1. Next, you sample such smokers. What is your probability of each blood pressure range
for the first individual sampled?

2. Suppose that after sampling 100 individuals, you obtain the following results:

Blood Pressure Range # of Individuals in This Range
≤ 100 2

101–120 15
121–140 23
141–160 25
≥ 161 35

Compute your probability of each range for the next individual sampled.

Section 10.2

Exercise 10.5 Suppose that we have the Bayesian network for parameter learning in Figure
10.6, and we have the following data:

i
i

i
i

i
i

i
i

Exercises 273

X
1 X

2

X
3

X
4

Figure 10.7 A DAG.

Case X Y Z
1 x1 y2 z1

2 x1 y1 z2

3 x2 y1 z1

4 x2 y2 z1

5 x1 y
2

z1

6 x2 y2 z2

7 x1 y2 z
1

8 x2 y1 z2

9 x1 y2 z1

10 x1 y1 z1

11 x1 y2 z1

12 x2 y1 z2

13 x1 y2 z1

14 x2 y2 z2

15 x1 y2 z1

Determine the updated Bayesian network for parameter learning.

Exercise 10.6 Use the method in Theorem 10.3 to develop Bayesian networks for param-
eter learning with equivalent sample sizes 1, 2, 4, and 8 for the DAG in Figure 10.7.

Section 10.3

Exercise 10.7 In the text, we updated the augmented Bayesian network in Figure 10.5
(a) with the data d in Table 10.2 using two iterations of Algorithm 10.1. Starting with the
results in the text, perform the next two iterations.

i i

Chapter 11

Learning Probabilistic Model
Structure

YX

Z

In the previous chapter we addressed the problem of parameter learning in a Bayesian net-
work. In this chapter we discuss structure learning. Section 11.1 introduces the problem of
Bayesian network structure learning from data. Sections 11.2 and 11.3 discuss two different
techniques for learning that structure. Then Section 11.4 provides a large-scale example of
structure learning. Next, Section 11.5 introduces software packages for learning structure,
and Section 11.6 shows how we can use Bayesian network structure learning to learn some-
thing about causal influences. Finally, Section 11.7 concerns class probability trees, which
are used for learning structure when we have a single target variable.

i
i

i
i

i
i

i
i

276 Chapter 11 Learning Probabilistic Model Structure

Table 11.1 Data on 12 Workers

Case Sex Height (inches) Wage ($)
1 female 64 30,000
2 male 64 30,000
3 female 64 40,000
4 female 64 40,000
5 female 68 30,000
6 female 68 40,000
7 male 64 40,000
8 male 64 50,000
9 male 68 40,000
10 male 68 50,000
11 male 70 40,000
12 male 70 50,000

11.1 Structure Learning Problem

Bayesian network structure learning concerns learning the DAG in a Bayesian network
from data. To accomplish this, we need to learn a DAG that satisfies the Markov condition
with the probability distribution P that is generating the data. Note that we do not know
P ; all we know are the data. The process of learning such a DAG is called model selection.

Example 11.1 Suppose we want to model the probability distribution P of sex, height,
and wage for American workers. We may obtain the data on 12 workers appearing in Table
11.1. We do not know the probability distribution P . However, from these data we want to
learn a DAG that is likely to satisfy the Markov condition with P . �

If our only goal was simply learning some DAG that satisfied the Markov condition with
P , our task would be trivial because, as discussed in Section 8.2.1, a probability distribution
P satisfies the Markov condition with every complete DAG containing the variables over
which P is defined. Recall that our goal with a Bayesian network is to represent a probability
distribution succinctly. A complete DAG does not accomplish this because, if there are n
binomial variables, the last variable in a complete DAG would require 2n−1 conditional
distributions. To represent a distribution P succinctly, we need to find a sparse DAG (one
containing few edges) that satisfies the Markov condition with P . Next we present methods
for doing this.

11.2 Score-Based Structure Learning

In score-based structure learning, we assign a score to a DAG based on how well the
DAG fits the data.

11.2.1 Bayesian Score

The Bayesian score is the probability of the data D given the DAG. We present this score
shortly. First we need to discuss the probability of data.

i
i

i
i

i
i

i
i

11.2 Score-Based Structure Learning 277

11.2.1.1 Probability of Data

Suppose that we are going to toss the same coin two times in a row. Let X1 be a random
variable whose value is the result of the first toss, and let X2 be a random variable whose
value is the result of the second toss. If we know that the probability of heads for this coin
is .5 and make the usual assumption that the outcomes of the two tosses are independent,
we have

P (X1 = heads,X2 = heads) =
1

2
× 1

2
=

1

4
.

This is a standard result. Suppose now that we are going to toss a thumbtack two times in a
row. Suppose further we represent our prior belief concerning the probability of heads using
a Dirichlet distribution with parameters a and b (as discussed in Section 10.1.1), and we
represent prior ignorance of the probability of heads by taking a = b = 1. If the outcome of
the first toss is heads, using the notation developed in Section 10.1.1, our updated probability
of heads is

P (heads|1, 0) =
a+ 1

a+ b+ 1
=

1 + 1

1 + 1 + 1
=

2

3
.

Heads is more probable for the second toss because our belief has changed owing to heads
occurring on the first toss. So, using our current notation in which we have identified two
random variables, we have that

P (X2 = heads|X1 = heads) = P (heads|1, 0) =
2

3
,

and

P (X1 = heads,X2 = heads) = P (X2 = heads|X1 = heads)P (X1 = heads)

=
2

3
× 1

2
=

1

3

P (X1 = heads,X2 = tails) = P (X2 = tails|X1 = heads)P (X1 = heads)

=
1

3
× 1

2
=

1

6

P (X1 = tails,X2 = heads) = P (X2 = heads|X1 = tails)P (X1 = tails)

=
1

3
× 1

2
=

1

6

P (X1 = tails,X2 = tails) = P (X2 = tails|X1 = tails)P (X1 = tails)

=
2

3
× 1

2
=

1

3
.

It might seem odd that the four outcomes do not have the same probability. However,
recall that we do not know the probability of heads. Therefore, we learn something about
the probability of heads from the result of the first toss. If heads occurs on the first toss,
that probability goes up; if tails occurs, it goes down. So, two consecutive heads or two
consecutive tails are more probable a priori than a head followed by a tail or a tail followed
by a head.

This result extends to a sequence of tosses. For example, suppose we toss the thumbtack
three times. Then, owing to the chain rule,

i
i

i
i

i
i

i
i

278 Chapter 11 Learning Probabilistic Model Structure

P (X1 = heads,X2 = tails,X3 = tails)

= P (X3 = tails|X2 = tails,X1 = heads)P (X2 = tails|X1 = heads)

P (X1 = heads)

=
b+ 1

a+ b+ 2
× b

a+ b+ 1
× a

a+ b

=
1 + 1

1 + 1 + 2
× 1

1 + 1 + 1
× 1

1 + 1
= .0833.

We get the same probability regardless of the order of the outcomes as long as the number
of heads and tails is the same. For example,

P (X1 = tails,X2 = tails,X3 = heads)

= P (X3 = heads|X2 = tails,X1 = tails)P (X2 = tails|X1 = tails)

P (X1 = tails)

=
a

a+ b+ 2
× b+ 1

a+ b+ 1
× b

a+ b

=
1

1 + 1 + 2
× 2

1 + 1 + 1
× 1

1 + 1
= .0833.

We now have the following theorem:

Theorem 11.1 Suppose that we are about to repeatedly toss a thumbtack (or perform any
repeatable experiment with two outcomes). Suppose further that we assume exchangeability,
and we represent our prior belief concerning the probability of heads using a Dirichlet
distribution with parameters a and b, where a and b are positive integers and m = a + b.
Let D be data that consist of s heads and t tails in n trials. Then

P (D) =
(m− 1)!

(m+ n− 1)!
× (a+ s− 1)!(b+ t− 1)!

(a− 1)!(b− 1)!
.

Proof. Because the probability is the same regardless of the order in which the heads
and tails occur, we can assume all the heads occur first. We therefore have (as before, the
notation s, t on the right side of the conditioning bar means that we have seen s heads and
t tails) the following:

P (D) = P (Xs+t = tails|s, t− 1) · · ·P (Xs+2 = tails|s, 1)P (Xs+1 = tails|s, 0)

P (Xs = heads|s− 1, 0) · · ·P (X2 = heads|1, 0)P (X1 = heads)

=
b+ t− 1

a+ b+ s+ t− 1
× · · · b+ 1

a+ b+ s+ 1
× b

a+ b+ s
×

a+ s− 1

a+ b+ s− 1
× · · · a+ 1

a+ b+ 1
× a

a+ b

=
(a+ b− 1)!

(a+ b+ s+ t− 1)!
× (a+ s− 1)!

(a− 1)!
× (b+ t− 1)!

(b− 1)!

=
(m− 1)!

(m+ n− 1)!
× (a+ s− 1)!(b+ t− 1)!

(a− 1)!(b− 1)!
.

The first equality is due to Theorem 10.1. This completes the proof.

i
i

i
i

i
i

i
i

11.2 Score-Based Structure Learning 279

Example 11.2 Suppose that, before tossing a thumbtack, we assign a = 3 and b = 5 to
model the slight belief that tails is more probable than heads. We then toss the coin ten
times and obtain four heads and six tails. Owing to the preceding theorem, the probability
of obtaining these data D is given by

P (D) =
(m− 1)!

(m+ n− 1)!
× (a+ s− 1)!(b+ t− 1)!

(a− 1)!(b− 1)!

=
(8− 1)!

(8 + 10− 1)!
× (3 + 4− 1)!(5 + 6− 1)!

(3− 1)!(5− 1)!
= .00077.

Note that the probability of these data is very small. This is because there are many possible
outcomes (namely 210) of tossing a thumbtack ten times. �

Theorem 11.1 holds, even if a and b are not integers. We merely state the result here.

Theorem 11.2 Suppose we are about to repeatedly toss a thumbtack (or perform any
repeatable experiment with two outcomes), we assume exchangeability, and we represent our
prior belief concerning the probability of heads using a Dirichlet distribution with parameters
a and b, where a and b are positive real numbers and m = a+ b. Let D be data that consist
of s heads and t tails in n trials. Then

P (D) =
Γ(m)

Γ(m+ n)
× Γ(a+ s)Γ(b+ t)

Γ(a)Γ(b)
. (11.1)

Proof. The proof can be found in [Neapolitan, 2004].

In the preceding theorem Γ denotes the gamma function. When n is an integer ≥ 1, we
have that

Γ(n) = (n− 1)! .

So, the preceding theorem generalizes Theorem 11.1.
We developed the method for computing the probability of data for the case of bino-

mial variables. It extends readily to multinomial variables. See [Neapolitan, 2004] for that
extension.

11.2.1.2 Learning DAG Models Using the Bayesian Score

Next we show how we score a DAG model by computing the probability of the data given
the model and how we use that score to learn a DAG model.

Suppose we have a Bayesian network for learning, as discussed in Section 10.2. For
example, we might have the network in Figure 11.1 (a). Here we call such a network
a DAG model. We can score a DAG model G based on data D by determining how
probable the data are given the DAG model. That is, we compute P (D|G). The formula
for this probability is the same as that developed in Theorem 11.2, except there is a term
of the form in Equality 11.1 for each probability in the network. So, the probability of data
D given the DAG model G1 in Figure 11.1 (a) is given by

P (D|G1) =
Γ(m11)

Γ(m11 + n11)
× Γ(a11 + s11)Γ(b11 + t11)

Γ(a11)Γ(b11)
× (11.2)

Γ(m21)

Γ(m21 + n21)
× Γ(a21 + s21)Γ(b21 + t21)

Γ(a21)Γ(b21)
×

Γ(m22)

Γ(m22 + n22)
× Γ(a22 + s22)Γ(b22 + t22)

Γ(a22)Γ(b22)
.

i
i

i
i

i
i

i
i

280 Chapter 11 Learning Probabilistic Model Structure

J F

a
11

 = 2

b
11

 = 2

a
21

 = 1

b
21

 = 1

a
22

 = 1

b
22

 = 1

P(j
1
) = a

11
/ (a

11
+b

11
) =1/2 P(f

1
| j

1
) = a

21
/ (a

21
+b

21
) = 1/2

P(f
1

| j
2
) = a

22
/ (a

22
+b

22
) = 1/2

(a)

J F

a
11

 = 2

b
11

 = 2

a
21

 = 2

b
21

 = 2

P(j
1
) = a

11
/ (a

11
+b

11
) =1/2 P(f

1
) = a

21
/ (a

21
+b

21
) = 1/2

(b)

Figure 11.1 The network in (a) models that J has a causal effect on F , whereas the network
in (b) models that neither variable causes the other.

The data used in each term include only the data relevant to the conditional probability
the term represents. This is exactly the same scheme that was used to learn parameters in
Section 10.2. For example, the value of s21 is the number of cases that have J equal to j2
and F equal to f1.

Similarly, the probability of data D given the DAG model G2 in Figure 11.1 (b) is given
by

P (D|G2) =
Γ(m11)

Γ(m11 + n11)
× Γ(a11 + s11)Γ(b11 + t11)

Γ(a11)Γ(b11)
× (11.3)

Γ(m21)

Γ(m21 + n21)
× Γ(a21 + s21)Γ(b21 + t21)

Γ(a21)Γ(b21)
.

Note that the values of a11, s11, and so on in Equality 11.3 are the ones relevant to G2

and are not the same values as those in Equality 11.2. We have not explicitly shown their
dependence on the DAG model, for the sake of notational simplicity.

Example 11.3 Suppose we want to determine whether job status (J) has a causal effect
on whether someone defaults on a loan (F). Furthermore, we articulate just two values for
each variable as follows:

Variable Value When the Variable Takes This Value
J j1 Individual is a white-collar worker

j2 Individual is a blue-collar worker
F f1 Individual has defaulted on a loan at least once

f2 Individual has never defaulted on a loan

We represent the assumption that J has a causal effect on F with the DAG model G1 in
Figure 11.1 (a) and the assumption that neither variable has a causal effect on the other
with the DAG model G2 in Figure 11.1 (b). We assume that F does not have a causal effect
on J , so we do not model this situation.

Suppose that next we obtain the data D in the following table:

i
i

i
i

i
i

i
i

11.2 Score-Based Structure Learning 281

Case J F
1 j1 f1

2 j1 f1

3 j1 f1

4 j1 f1

5 j1 f2

6 j2 f1

7 j2 f2

8 j2 f2

Then, owing to Equality 11.2,

P (D|G1) =
Γ(m11)

Γ(m11 + n11)
× Γ(a11 + s11)Γ(b11 + t11)

Γ(a11)Γ(b11)
×

Γ(m21)

Γ(m21 + n21)
× Γ(a21 + s21)Γ(b21 + t21)

Γ(a21)Γ(b21)
×

Γ(m22)

Γ(m22 + n22)
× Γ(a22 + s22)Γ(b22 + t22)

Γ(a22)Γ(b22)

=
Γ (4)

Γ(4 + 8)
× Γ (2 + 5) Γ(2 + 3)

Γ(2)Γ(2)
×

Γ (2)

Γ(2 + 5)
× Γ (1 + 4) Γ(1 + 1)

Γ(1)Γ(1)
×

Γ (2)

Γ(2 + 3)
× Γ (1 + 1) Γ(1 + 2)

Γ(1)Γ(1)

= 7. 2150× 10−6.

Furthermore,

P (D|G2) =
Γ(m11)

Γ(m11 + n11)
× Γ(a11 + s11)Γ(b11 + t11)

Γ(a11)Γ(b11)
×

Γ(m21)

Γ(m21 + n21)
× Γ(a21 + s21)Γ(b21 + t21)

Γ(a21)Γ(b21)
×

=
Γ (4)

Γ(4 + 8)
× Γ (2 + 5) Γ(2 + 3)

Γ(2)Γ(2)
×

Γ (4)

Γ(4 + 8)
× Γ (2 + 5) Γ(2 + 3)

Γ(2)Γ(2)

= 6.7465× 10−6.

If our prior belief is that neither model is more probable than the other, we assign

P (G1) = P (G2) = .5.

Then, owing to Bayes’ theorem,

P (G1|D) =
P (D|G1)P (G1)

P (D|G1)P (G1) + P (D|G2)P (G2)

=
7. 2150× 10−6 × .5

7. 2150× 10−6 × .5 + 6.7465× 10−6 × .5
= .517

i
i

i
i

i
i

i
i

282 Chapter 11 Learning Probabilistic Model Structure

and

P (G2|D) =
P (D|G2)P (G2)

P (D)

=
6.7465× 10−6(.5)

7. 2150× 10−6 × .5 + 6.7465× 10−6 × .5
= .483.

We select (learn) DAG G1 and conclude that it is more probable that job status does
have a causal effect on whether someone defaults on a loan. �

11.2.1.3 Learning DAG Patterns

The DAG F → J is Markov equivalent to the DAG in Figure 11.1 (a). Intuitively, we would
expect it to have the same score. As long as we use a prior equivalent sample size (see
Section 10.2.2), they will have the same score. This is discussed in [Neapolitan, 2004]. In
general, we cannot distinguish Markov-equivalent DAGs based on data. So, we are actually
learning Markov equivalence classes (DAG patterns) when we learn a DAG model from data.

11.2.1.4 Scoring Larger DAG Models

We illustrated Bayesian scoring using two variables. The general formula for the score when
there are n variables and the variables are binomial is as follows.

Theorem 11.3 Suppose we have a DAG G = (V,E) where V is a set of binomial random
variables, we assume exchangeability, and we use a Dirichlet distribution to represent our
prior belief for each conditional probability distribution of every variable in V. Suppose
further we have data D consisting of a set of data items such that each data item is a vector
of values of all the variables in V. Then

P (D|G) =

n∏
i=1

qi∏
j=1

Γ(Nij)

Γ(Nij +Mij)

Γ(aij + sij)Γ(bij + tij)

Γ(aij)Γ(bij)
(11.4)

where

1. n is the number of variables.

2. qi is the number of different instantiations of the parents of Xi.

3. aij is our ascertained prior belief concerning the number of times Xi took its first
value when the parents of Xi had their jth instantiation.

4. bij is our ascertained value prior belief concerning the number of times Xi took its
second value when the parents of Xi had their jth instantiation.

5. sij is the number of times in the data that Xi took its first value when the parents of
Xi had their jth instantiation.

6. tij is the number of times in the data that Xi took its second value when the parents
of Xi had their jth instantiation.

7.
Nij = aij + bij

Mij = sij + tij .

i
i

i
i

i
i

i
i

11.2 Score-Based Structure Learning 283

Proof. The proof can be found in [Neapolitan, 2004].

Note that, other than n, all the variables defined in the previous theorem depend on G,
but we do not show that dependency for the sake of simplicity.

We call the P (D|G), obtained using the assumptions in the previous theorem, the
Bayesian score assuming Dirichlet priors, but ordinarily we only say Bayesian score.
When we use a prior equivalent sample α such that the prior joint distribution is uniform as
shown in Theorem 10.3 the score is called the Bayesian Dirichlet equivalent uniform
(BDeu) score. When each hyperparameter aij = bij = 1, the score is called the K2 score.

We developed the method for computing the Bayesian score for the case of binomial
variables. See [Neapolitan, 2004] for an extension to multinomial variables.

Geiger and Heckerman [1994] developed a Bayesian score for scoring Gaussian Bayesian
networks. That is, each variable is assumed to be a function of its parents as shown in
Equality 7.2 in Section 7.5.1.

11.2.2 BIC Score

The Bayesian information criterion (BIC) score is as follows:

BIC (G : D) = ln
(
P (D|P̂,G)

)
− d

2
lnm,

where m is the number of data items, d is the dimension of the DAG model, and P̂ is
the set of maximum likelihood values of the parameters. The dimension is the number of
parameters in the model.

The BIC score is intuitively appealing because it contains (1) a term that shows how
well the model predicts the data when the parameter set is equal to its ML value, and (2)
a term that punishes for model complexity. Another nice feature of the BIC is that it does
not depend on the prior distribution of the parameters, which means there is no need to
assess one.

Example 11.4 Suppose we have the DAG models in Figure 11.1 and the data in Example
11.3. That is, we have the data D in the following table:

Case J F
1 j1 f1

2 j1 f1

3 j1 f1

4 j1 f1

5 j1 f2

6 j2 f1

7 j2 f2

8 j2 f2

For the DAG model in Figure 11.1 (a), we have that

P̂ (j1) =
5

8
P̂ (f1|j1) =

4

5
P̂ (f1|j2) =

1

3
.

Because there are three parameters in the model, the dimension d is equal to 3. We then
have that

i
i

i
i

i
i

i
i

284 Chapter 11 Learning Probabilistic Model Structure

P (D|P̂,G1) =
[
P̂ (f1|j1)P̂ (j1)

]4 [
P̂ (f2|j1)P̂ (j1)

] [
P̂ (f1|j2)P̂ (j2)

] [
P̂ (f2|j2)P̂ (j2)

]2
=

(
4

5

5

8

)4(
1

5

5

8

)(
1

3

3

8

)(
2

3

3

8

)2

= 6. 103 5× 10−5

and therefore

BIC (G1 : D) = ln
(
P (D|P̂,G1)

)
− d

2
lnm

= ln
(
6. 103 5× 10−5

)
− 3

2
ln 8

= −12.823.

For the DAG model in Figure 11.1 (b) we have that

P̂ (j1) =
5

8
P̂ (f1) =

5

8
.

Because there are three parameters in the model, d = 2. We then have that

P (D|P̂,G2)

=
[
P̂ (f1)P̂ (j1)

]4 [
P̂ (f2|)P̂ (j1)

] [
P̂ (f1)P̂ (j2)

] [
P̂ (f2)P̂ (j2)

]2
=

(
5

8

5

8

)4(
3

8

5

8

)(
5

8

3

8

)(
3

8

3

8

)2

= 2. 529 2× 10−5,

and therefore

BIC (G2 : D) = ln
(
P (D|P̂,G2)

)
− d

2
lnm

= ln
(
2. 529 2× 10−5

)
− 2

2
ln 8

= −12.644.

Note that although the data were more probable given G1, G2 won because it is less complex.
�

Looking at Examples 11.3 and 11.4, we see that the Bayesian score and the BIC can
choose different DAG models. The reason is that the dataset is small. In the limit they
will both choose the same DAG model because the BIC is asymptotically correct. A scoring
criterion for DAG models is called asymptotically correct if for a sufficiently large dataset
it chooses the DAG that maximizes P (D|G).

11.2.3 Consistent Scoring Criteria

We have presented two methods for scoring DAG models. There are others, several of which
are discussed in [Neapolitan, 2004]. The question remains as to the quality of these scores.
The probability distribution generating the data is called the generative distribution.
Our goal with a Bayesian network is to represent the generative distribution succinctly. A

i
i

i
i

i
i

i
i

11.2 Score-Based Structure Learning 285

consistent scoring criterion will almost certainly do this if the dataset is large. Specifically,
we say a DAG includes a probability distribution P if every conditional independency
entailed by the DAG is in P . A consistent scoring criterion for DAG models has the
following two properties:

1. As the size of the dataset approaches infinity, the probability approaches one that a
DAG that includes P will score higher than a DAG that does not include P .

2. As the size of the dataset approaches infinity, the probability approaches one that a
smaller DAG that includes P will score higher than a larger DAG that includes P .

Both the Bayesian score and the BIC are consistent scoring criteria.

11.2.4 How Many DAGs Must We Score?

When there are not many variables, we can exhaustively score all possible DAGs. We
then select the DAG(s) with the highest score. However, when the number of variables is
not small, it is computationally unfeasible to find the maximizing DAGs by exhaustively
considering all DAG patterns. That is, Robinson [1977] showed that the number of DAGs
containing n nodes is given by the following recurrence:

f(n) =
n∑
i=1

(−1)i+1
(n
i

)
2i(n−i)f(n− i) n > 2

f(0) = 1

f(1) = 1.

It is left as an exercise to show f(2) = 3, f(3) = 25, f(5) = 29,000, and f(10) = 4.2× 1018.
Furthermore, Chickering [2002] proved that for certain classes of prior distributions, the
problem of finding a highest-scoring DAG is NP-hard. So, researchers developed heuristic
DAG search algorithms. We discuss such algorithms in Section 11.2.7.

11.2.5 Using the Learned Network to Do Inference

Once we learn a DAG from data, we can then learn the parameters. The result will be a
Bayesian network that we can use to do inference for the next case. The next example
illustrates the technique.

Example 11.5 Suppose we have the situation and data in Example 11.3. Then, as shown
in Example 11.3, we would learn the DAG in Figure 11.1 (a). Next we can update the
conditional probabilities in the Bayesian network for learning in Figure 11.1 (a) using the
preceding data and the parameter learning technique discussed in Section 10.2. The result
is the Bayesian network in Figure 11.2.

Suppose now that we find out that Sam has F = f2. That is, Sam has never defaulted
on a loan. We can use the Bayesian network to compute the probability that Sam is a
white-collar worker. For this simple network, we can just use Bayes’ theorem as follows:

P (j1|f1) =
P (f1|j1)P (j1)

P (f1|j1)P (j1) + Pf1|j2)P (j2)

=
(5/7) (7/12)

(5/7) (7/12) + (2/5) (5/12)
= .714.

The probabilities in the previous calculation are all conditional on the data D and the DAG
that we select. However, once we select a DAG and learn the parameters, we do not bother
to show this dependence. �

i
i

i
i

i
i

i
i

286 Chapter 11 Learning Probabilistic Model Structure

J F

a
11

 = 7

b
11

 = 5

a
21

 = 5

b
21

 = 2

a
22

 = 2

b
22

 = 3

P(j
1
) = a

11
/ (a

11
+b

11
) =7/12 P(f

1
| j

1
) = a

21
/ (a

21
+b

21
) = 5/7

P(f
1

| j
2
) = a

22
/ (a

22
+b

22
) = 2/5

Figure 11.2 An updated Bayesian network for learning based on the data in Example 11.5.

Table 11.2 Data on Five Cases with Some Data Items Missing

Case X1 X2 X3

1 1 1 2
2 1 ? 1
3 ? 1 ?
4 1 2 1
5 2 ? ?

11.2.6 Learning Structure with Missing DataF

Suppose now our dataset has data items missing at random. Table 11.2 shows such a dataset.
The straightforward way to handle this dataset is to apply the law of total probability and
sum over all the variables with missing values. That is, if D is the set of random variables
for which we have values, and M is the set of random variables whose values are missing,
for a given DAG G,

P (D|G) =
∑
M

P (D,M|G). (11.5)

For example, if X(h) = {X(h)
1 , X

(h)
2 , . . . , X

(h)
n } represents the value of the data for the hth

case in Table 11.2, we have for the dataset in that table that

D = {X(1)
1 , X

(1)
2 , X

(1)
3 , X

(2)
1 , X

(2)
3 , X

(3)
2 , X

(4)
1 , X

(4)
2 , X

(4)
3 , X

(5)
1 }

and
M = {X(2)

2 , X
(3)
1 , X

(3)
3 , X

(5)
2 , X

(5)
3 }.

We can compute each term in the sum in Equality 11.5 using Equality 11.4. Because this
sum is over an exponential number of terms relative to the number of missing data items, we
can only use it when the number of missing items is not large. To handle the case of a large
number of missing items, we need approximation methods. One approximation method is
to use Monte Carlo techniques. We will use a Monte Carlo technique called Gibb’s sampling
to approximate the probability of data containing missing items. Gibb’s sampling is one
variety of an approximation method called Markov Chain Monte Carlo (MCMC). So first
we review Markov chains and MCMC.

11.2.6.1 Markov Chains

This exposition is only for the purpose of review. If you are unfamiliar with Markov chains,
you should consult a complete introduction as can be found in [Feller, 1968]. We start with
the definition:

Definition 11.1 A Markov chain consists of the following:

i
i

i
i

i
i

i
i

11.2 Score-Based Structure Learning 287

e
2

e
2

e
2

e
2

e
3

e
3

e
3

e
1

e
1

e
2

e
2

e
2

e
2

e
3

e
3

e
1

e
1

e
2

e
2

e
3

e
1

e
1

e
3

e
1

Figure 11.3 An urn model of a Markov chain.

1. A set of outcomes (states) e1, e2,

2. For each pair of states ei and ej a transition probability pij such that∑
j

pij = 1.

3. A sequence of trials (random variables) E(1), E(2), . . . such that the outcome of each
trial is one of the states, and

P (E(h+1) = ej |E(h) = ei) = pij .

�

To completely specify a probability space we need to define initial probabilities P (E(0) =
ej) = pj , but these probabilities are not necessary to our theory and will not be discussed
further.

Example 11.6 Any Markov chain can be represented by an urn model. One such model
is shown in Figure 11.3. The Markov chain is obtained by choosing an initial urn according
to some probability distribution, picking a ball at random from that urn, moving to the urn
indicated on the ball chosen, picking a ball at random from the new urn, and so on. �

The transition probabilities pij are arranged in a matrix of transition probabilities as
follows:

P =

p11 p12 p13 · · ·
p21 p22 p23 · · ·
p31 p32 p33 · · ·
...

...
...

. . .

 .

This matrix is called the transition matrix for the chain.

Example 11.7 For the Markov chain determined by the urns in Figure 11.3 the transition
matrix is

P =

 1/6 1/2 1/3
2/9 4/9 1/3
1/2 1/3 1/6

 .

i
i

i
i

i
i

i
i

288 Chapter 11 Learning Probabilistic Model Structure

A Markov chain is called finite if it has a finite number of states. Clearly the chain

represented by the urns in Figure 11.3 is finite. We denote by p
(n)
ij the probability of a

transition from ei to ej in exactly n trials. That is, p
(n)
ij is the conditional probability

of entering ej at the nth trial given the initial state is ei. We say ej is reachable from ei

if there exists an n ≥ 0 such that p
(n)
ij > 0. A Markov chain is called irreducible if every

state is reachable from every other state.

Example 11.8 Clearly, if pij > 0 for every i and j, the chain is irreducible. �

The state ei has period t > 1 if p
(n)
ii = 0 unless n = mt for some integer m, and t is the

largest integer with this property. Such a state is called periodic. A state is aperiodic if
no such t > 1 exists.

Example 11.9 Clearly, if pii > 0, ei is aperiodic. �

We denote by f
(n)
ij the probability that starting from ei the first entry to ej occurs at

the nth trial. Furthermore, we let

fij =

∞∑
n=1

f
(n)
ij .

Clearly, fij ≤ 1. When fij = 1, we call Pij(n) ≡ f (n)
ij the distribution of the first passage

for ej starting at ei. In particular, when fii = 1, we call Pi(n) ≡ f
(n)
ii the distribution of

the recurrence times for ei, and we define the mean recurrence time for ei to be

µi =
∞∑
n=1

nf
(n)
ii .

The state ei is called persistent if fii = 1 and transient if fii < 1. A persistent state ei
is called null if its mean recurrence time µi =∞ and otherwise it is called non-null.

Example 11.10 It can be shown that every state in a finite irreducible chain is persis-
tent (see [Ash, 1970]), and that every persistent state in a finite chain is non-null (see
[Feller, 1968]). Therefore every state in a finite irreducible chain is persistent and non-null.

�

An aperiodic persistent non-null state is called ergodic. A Markov chain is called
ergodic if all its states are ergodic.

Example 11.11 Owing to Examples 11.8, 11.9, and 11.10, if in a finite chain we have
pij > 0 for every i and j, the chain is an irreducible ergodic chain. �

We have the following theorem concerning irreducible ergodic chains:

Theorem 11.4 In an irreducible ergodic chain, the limits

rj = lim
n→∞

p
(n)
ij (11.6)

exist and are independent of the initial state ei. Furthermore, rj > 0,∑
j

rj = 1, (11.7)

i
i

i
i

i
i

i
i

11.2 Score-Based Structure Learning 289

rj =
∑
i

ripij , (11.8)

and

rj =
1

µj
,

where µj is the mean recurrence time of ej .
The probability distribution

P (E = ej) ≡ rj
is called the stationary distribution of the Markov chain.

Conversely, suppose a chain is irreducible and aperiodic with transition matrix P, and
there exist numbers rj ≥ 0 satisfying Equalities 11.7 and 11.8. Then the chain is ergodic,
and the rjs are given by Equality 11.6.
Proof. The proof can be found in [Feller, 1968].

We can write Equality 11.8 in the matrix/vector form

rT = rTP. (11.9)

That is,

(
r1 r2 r3 · · ·

)
=
(
r1 r2 r3 · · ·

)

p11 p12 p13 · · ·
p21 p22 p23 · · ·
p31 p32 p33 · · ·
...

...
...

. . .

 .

Example 11.12 Suppose we have the Markov chain determined by the urns in Figure
11.3. Then (

r1 r2 r3

)
=
(
r1 r2 r3

) 1/6 1/2 1/3
2/9 4/9 1/3
1/2 1/3 1/6

 . (11.10)

Solving the system of equations determined by Equalities 11.7 and 11.10, we obtain(
r1 r2 r3

)
=
(

2/7 3/7 2/7
)
.

This means for n large, the probabilities of being in states e1, e2, and e3 are respectively
about 2/7, 3/7, and 2/7 regardless of the initial state. �

11.2.6.2 MCMC

Again our coverage is cursory. See [Hastings, 1970] for a more thorough introduction.
Suppose we have a finite set of states {e1, e2, . . . es}, and a probability distribution P (E =

ej) ≡ rj defined on the states such that rj > 0 for all j. Suppose further we have a function
f defined on the states, and we wish to estimate

I =
s∑
j=1

f(ej)rj .

We can obtain an estimate as follows. Given we have a Markov chain with transition matrix
P such that rT =

(
r1 r2 r3 · · ·

)
is its stationary distribution, we simulate the chain

for trials 1, 2, ...M . Then if ki is the index of the state occupied at trial i and

I ′ =
M∑
i=1

f(eki)

M
, (11.11)

i
i

i
i

i
i

i
i

290 Chapter 11 Learning Probabilistic Model Structure

the ergodic theorem says that I ′ → I with probability 1 (see [Tierney, 1996]). So we
can estimate I by I ′. This approximation method is called Markov Chain Monte Carlo
(MCMC). To obtain more rapid convergence, in practice a “burn-in” number of iterations is
used so that the probability of being in each state is approximately given by the stationary
distribution. The sum in Expression 11.11 is then obtained over all iterations past the
burn-in time. Methods for choosing a burn-in time and the number of iterations to use after
burn-in are discussed in [Gilks et al., 1996].

It is not hard to see why the approximation converges. After a sufficient burn-in time,
the chain will be in state ej about rj fraction of the time. So if we do M iterations after
burn in, we would have

M∑
i=1

f(eki)/M ≈
s∑
j=1

f(ej)rjM

M
=

s∑
j=1

f(ej)rj .

To apply this method for a given distribution r, we need to construct a Markov chain
with transition matrix P such that r is its stationary distribution. Next we show two ways
of doing this.

Metropolis-Hastings Method Owing to Theorem 11.4, we see from Equality 11.9 that
we need only find an irreducible aperiodic chain such that its transition matrix P satisfies

rT = rTP. (11.12)

It is not hard to see that if we determine values pij such that for all i and j,

ripij = rjpji, (11.13)

then the resultant P satisfies Equality 11.12. Toward determining such values, let Q be the
transition matrix of an arbitrary Markov chain whose states are the members of our given
finite set of states {e1, e2, . . . es}, and let

αij =

sij

1 +
riqij
rjqji

qij 6= 0, qji 6= 0

0 qij = 0 or qji = 0

, (11.14)

where sij is a symmetric function of i and j chosen so that 0 ≤ αij ≤ 1 for all i and j. We
then take

pij = αijqij i 6= j (11.15)

pii = 1−
∑
j 6=i

pij .

It is straightforward to show that the resultant values of pij satisfy Equality 11.13. The
irreducibility of P must be checked in each application.

Hastings [1970] suggests the following way of choosing s: If qij and qji are both nonzero,
set

sij =

1 +

riqij
rjqji

rjqji
riqij

≥ 1

1 +
rjqji
riqij

rjqji
riqij

≤ 1

. (11.16)

i
i

i
i

i
i

i
i

11.2 Score-Based Structure Learning 291

Given this choice, we have

αij =

1 qij 6= 0, qji 6= 0,
rjqji
riqij

≥ 1

rjqji
riqij

qij 6= 0, qji 6= 0,
rjqji
riqij

≤ 1

0 qij = 0 or qji = 0

. (11.17)

If we make Q symmetric (that is, qij = qji for all i and j), we have the method devised by
Metropolis et al. (1953). In this case

αij =

1 qij 6= 0, rj ≥ ri

rj/ri qij 6= 0, rj ≤ ri

0 qij = 0

. (11.18)

Note that with this choice if Q is irreducible, so is P.

Example 11.13 Suppose rT =
(

1/8 3/8 1/2
)
. Choose Q symmetric as follows:

Q =

 1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

 .

Choose s according to Equality 11.16 so that α has the values in Equality 11.18. We then
have

α =

 1 1 1
1/3 1 1
1/4 3/4 1

 .

Using Equality 11.15 we have

P =

 1/3 1/3 1/3
1/9 5/9 1/3
1/12 1/4 2/3

 .

Notice that

rTP =
(

1/8 3/8 1/2
) 1/3 1/3 1/3

1/9 5/9 1/3
1/12 1/4 2/3

=

(
1/8 3/8 1/2

)
= rT ,

as it should. �

Once we have constructed matrices Q and α as discussed above, we can conduct the
simulation as follows:

1. Given the state occupied at the kth trial is ei, choose a state using the probability
distribution given by the ith row of Q. Suppose that state is ej .

2. Choose the state occupied at the (k + 1)st trial to be ej with probability αij and to
be ei with probability 1− αij .

In this way, when state ei is the current state, ej will be chosen qij fraction of the time in
Step (1), and of those times ej will be chosen αij fraction of the time in Step (2). So overall,
ej will be chosen αijqij = pij fraction of the time (see Equality 11.15), which is what we
want.

i
i

i
i

i
i

i
i

292 Chapter 11 Learning Probabilistic Model Structure

Gibb’s Sampling Method Next we show another method for creating a Markov chain
whose stationary distribution is a particular joint probability distribution. The method
is called Gibb’s sampling, and it concerns the case where we have n random variables
X1, X2, . . . Xn and a joint probability distribution P of the variables (as in a Bayesian
network). If we let X = {X1, X2, . . . Xn}, we want to approximate∑

x

f(x)P (x).

To approximate this sum using MCMC, we need to create a Markov chain whose set of
states is all possible values of X, and whose stationary distribution is P (x). We do this by
choosing the value of X in the hth trial as follows:

Pick x
(h)
1 using the distribution P (x1|x(h−1)

2 , x
(h−1)
3 , . . . , x(h−1)

n).

Pick x
(h)
2 using the distribution P (x2|x(h)

1 , x
(h−1)
3 , . . . , x(h−1)

n).

...

Pick x
(h)
k using the distribution P (xk|x(h)

1 , . . . , x
(h)
k−1, x

(h−1)
k+1 . . . , x(h−1)

n).

...

Pick x(h)
n using the distribution P (xn|x(h)

1 , . . . , x
(h)
n−1).

Notice that in the kth step, all variables except x
(h)
k are unchanged, and the new value of

x
(h)
k is drawn from its distribution conditional on the current values of all the other variables.

As long as all conditional probabilities are nonzero, the chain is irreducible. Next we
verify that P (x) is the stationary distribution for the chain. If we let p(x; x̂) denote the
transition probability from x to x̂ in each trial, we need to show that

P (x̂) =
∑
x

P (x)p(x; x̂). (11.19)

It is not hard to see that it suffices to show that Equality 11.19 holds for each each step of
each trial. To that end, for the kth step we have

∑
x

P (x)pk(x; x̂) =
∑

x1,...xn

P (x1, . . . , xn)pk(x1, . . . , xn; x̂1, . . . , x̂n)

=
∑
xk

P (x̂1, . . . , x̂k−1, xk, x̂k+1, . . . , x̂n)P (x̂k|x̂1, . . . , x̂k−1, x̂k+1, . . . , x̂n)

= P (x̂k|x̂1, . . . , x̂k−1, x̂k+1, . . . , x̂n)
∑
xk

P (x̂1, . . . , x̂k−1, xk, x̂k+1, . . . , x̂n)

= P (x̂k|x̂1, . . . , x̂k−1, x̂k+1, . . . x̂n)P (x̂1, . . . x̂k−1, x̂k+1, . . . x̂n)

= P (x̂1, . . . x̂k−1, x̂k, x̂k+1, . . . , x̂n)

= P (x̂).

The second step follows because pk(x; x̂) = 0 unless x̂j = xj for all j 6= k.
See [Geman and Geman, 1984] for more on Gibb’s sampling.

11.2.6.3 Learning with Missing Data Using Gibb’s Sampling

The Gibb’s sampling approach we use is called the Candidate method (see [Chib, 1995]).
The approach proceeds as follows: Let D be the set of values of the variables for which we

i
i

i
i

i
i

i
i

11.2 Score-Based Structure Learning 293

have values. By Bayes’ theorem we have

P (D|G) =
P (D|̌f(G)

,G)ρ(̌f
(G)|G)

ρ(̌f
(G)|D,G)

, (11.20)

where f̌
(G)

is an arbitrary assignment of values to the parameters in G. To approximate

P (D|G), we choose some value of f̌
(G)

, evaluate the numerator in Equality 11.20 exactly,
and approximate the denominator using Gibb’s sampling. For the denominator, we have

ρ(̌f
(G)|D,G) =

∑
m

ρ(̌f
(G)|D,m,G)P (m|D,G)

where M is the set of variables that has missing values.
To approximate this sum using Gibb’s sampling, we do the following:

1. Initialize the state of the unobserved variables to arbitrary values yielding a complete
dataset D1.

2. Choose some unobserved variable X
(h)
i arbitrarily and obtain a value of X

(h)
i using

P (x
′(h)
i |D1 − {x̌(h)

i },G) =
P (x

′(h)
i ,D1 − {x̌(h)

i }|G)∑
x
(h)
i

P (x
(h)
i ,D1 − {x̌(h)

i }|G)

where x̌
(h)
i is the value of X

(h)
i in D1, and the sum is over all values in the space of

X
(h)
i . The terms in the numerator and denominator can be computed using Equality

11.4.

3. Repeat Step (2) for all the other unobserved variables, where the complete dataset
used in the (k+1)st iteration contains the values obtained in the previous k iterations.

This will yield a new complete dataset D2.

4. Iterate the previous two steps some number R times where the complete dataset from
the the jth iteration is used in the (j + 1)st iteration. In this manner R complete
datasets will be generated. For each complete dataset Dj , compute

ρ(̌f
(G)|Dj ,G)

using Equality 10.3.

5. Approximate

ρ(̌f
(G)|D,G) ≈

∑R
j=1 ρ(̌f

(G)|Dj ,G)

R
.

Although the Candidate method can be applied with any value of f̌
(G)

of the parameters,
some assignments lead to faster convergence. Chickering and Heckerman [1997] discuss
methods for choosing the value.

11.2.7 Approximate Structure Learning

Recall from Section 11.2.4 that when the number of variables is not small, it is compu-
tationally unfeasible to find the maximizing DAGs by exhaustively considering all DAGs.
Therefore, researchers have developed heuristic search algorithms. We discuss such algo-
rithms next.

i
i

i
i

i
i

i
i

294 Chapter 11 Learning Probabilistic Model Structure

11.2.7.1 K2 Algorithm

We present an algorithm in which the search space is the set of all DAGs containing n
nodes, where n is our number of random variables. In these algorithms, our goal is to find
a DAG with maximum score, where our scoring criterion could be the Bayesian score, the
BIC score, or some other score. Therefore, we will simply refer to the score as score (G : D),
where D is our data.

If we use either the Bayesian score or the BIC score, the score for the entire DAG is a
product of local scores for each node. For example, Theorem 11.3 obtains the result that
the Bayesian score is given by

P (D|G) =
n∏
i=1

qGi∏
j=1

Γ(NG
ij)

Γ(NG
ij +MG

ij)

Γ(aGij + sGij)Γ(bGij + tGij)

Γ(aGij)Γ(bGij)
.

See Theorem 11.3 for the definition of the variables in this formula. Note that we have now
explicitly shown their dependence on G. Let PAG

i denote the parents of Xi in G. For each
node Xi, define

score(Xi,PAG
i : D) =

qGi∏
j=1

Γ(NG
ij)

Γ(NG
ij +MG

ij)

Γ(aGij + sGij)Γ(bGij + tGij)

Γ(aGij)Γ(bGij)
.

This local score depends only on parameter values stored at Xi, and data values of Xi and
nodes in PAG

i , and the P (D|G) is the product of these local scores.

Cooper and Herskovits [1992] developed a greedy search algorithm that tries to maximize
the score of the DAG by maximizing these local scores. That is, for each variable Xi, they
locally find a value PAi that approximately maximizes score(Xi,PAG

i : D). The single
operation in this search algorithm is the addition of a parent to a node. The algorithm
proceeds as follows: We assume an ordering of the nodes such that if Xi precedes Xj in
the ordering, an arc from Xj to Xi is not allowed. Let Pred(Xi) be the set of nodes that

precede Xi in the ordering, We initially set the parents PAG
i of Xi to empty and compute

score(Xi,PAG
i : D). Next we visit the nodes in sequence according to the ordering. When

we visit Xi, we determine the node in Pred(Xi) that most increases score(Xi,PAG
i : D).

We “greedily” add this node to PAi. We continue doing this until the addition of no node
increases score(Xi,PAG

i : D). Pseudocode for this algorithm follows. The algorithm is called
K2 because it evolved from a system named Kutató [Herskovits and Cooper, 1990].

Algorithm 11.1 K2

Input: A set V of n random variables; an upper bound u on the number

of parents a node may have; data D.

Output: n sets of parent nodes PAi, where 1 ≤ i ≤ n, in a DAG that

approximates maximizing score (G : D) .

i
i

i
i

i
i

i
i

11.2 Score-Based Structure Learning 295

Procedure K2 (V, u, D, var PAi, 1 ≤ i ≤ n)
for i = 1 to n

PAG
i = ∅;

Pold = score(Xi,PAG
i : D);

findmore = true;
while findmore and |PAG

i | < u
Z = node in Pred(Xi)− PAi that maximizes

score(Xi,PAG
i ∪ {Z} : D);

Pnew = score(Xi,PAG
i ∪ {Z} : D);

if Pnew > Pold
Pold = Pnew;
PAG

i = PAG
i ∪ {Z};

else
findmore = false;

endwhile
endfor

Neapolitan [2004] analyzes the algorithm. Furthermore, he shows an example in which
the algorithm was provided with a prior order and learned a DAG from 10,000 cases sampled
at random from the ALARM Bayesian network [Beinlich et al., 1989]. The DAG learned
was identical to the one in the ALARM network except that one edge was missing.

You might wonder where we could obtain the ordering required by Algorithm 11.1. Such
an ordering could possibly be obtained from domain knowledge such as a time ordering of
the variables. For example, we might know that in patients, smoking precedes bronchitis
and lung cancer and that each of these conditions precedes fatigue and a positive chest
X-ray.

When a model searching algorithm need only locally recompute a few scores to determine
the score for the next model under consideration, we say the algorithm has local scoring
updating. A model with local scoring updating is considerably more efficient than one
without it. Clearly, the K2 algorithm has local scoring updating.

11.2.7.2 An Algorithm without a Prior Ordering

Next we present a straightforward greedy search algorithm that does not require a time
ordering. The search space is again the set of all DAGs containing the n variables, and the
set of DAG operations is as follows:

1. If two nodes are not adjacent, add an edge between them in either direction.

2. If two nodes are adjacent, remove the edge between them.

3. If two nodes are adjacent, reverse the edge between them.

All operations are subject to the constraint that the resultant graph does not contain a
cycle. The set of all DAGs that can be obtained from G by applying one of the operations
is called Nbhd(G). If G′ ∈ Nbhd(G), we say G′ is in the neighborhood of G. Clearly, this
set of operations is complete for the search space. That is, for any two DAGs G and G′,
there exists a sequence of operations that transforms G to G′. The reverse edge operation is
not needed for the operations to be complete, but it increases the connectivity of the space
without adding too much complexity, which typically leads to a better search. Furthermore,
when we use a greedy search algorithm, including edge reversals often seems to lead to a
better local maximum.

i
i

i
i

i
i

i
i

296 Chapter 11 Learning Probabilistic Model Structure

The algorithm proceeds as follows: We start with a DAG with no edges. At each step of
the search, of all those DAGs in the neighborhood of our current DAG, we “greedily” choose
the one that maximizes score (G : D). We halt when no operation increases this score.

Note that in each step, if an edge to Xi is added or deleted, we need only re-evaluate
score(Xi,PAi : D). If an edge between Xi and Xj is reversed, we need only reevaluate
score(Xi,PAi : D) and score(Xj ,PAj : D). Therefore, this algorithm has local scoring
updating. The algorithm follows:

Algorithm 11.2 DAG Search

Input: A set V of n random variables; data D.
Output: A set of edges E in a DAG that approximates maximizing score (G : D) .

Procedure DAG Search (V, D, var E)
E = ∅; G = (V,E);
do

if any DAG in Nbhd(G) increases score (G : D)
modify E based on the one that increases score (G : D) most;

while some operation increases score (G : D) ;

A problem with a greedy search algorithm is that it could halt at a candidate solu-
tion that locally maximizes the objective function rather than globally maximizes it (see
[Xiang et al., 1996]). One way of dealing with this problem is iterated hill-climbing. In iter-
ated hill-climbing, local search is done until a local maximum is obtained. Then the current
structure is randomly perturbed, and the process is repeated. Finally, the maximum over
local maxima is used. Other methods for attempting to avoid local maxima include simu-
lated annealing [Metropolis et al., 1953], best-first search [Korf, 1993], and Gibb’s sampling
[Neapolitan, 2004].

11.2.7.3 Searching over DAG Patterns

Next we present an algorithm that searches over DAG patterns. First, we discuss why we
might want to do this.

Why Search over DAG Patterns? Although Algorithms 8.1 and 8.2 find a DAG G
rather than a DAG pattern, we can use them to find a DAG pattern by determining the
DAG pattern gp representing the Markov equivalence class to which G belongs. Because
score(gp : D) = score(G : D), we have approximated maximizing score(D, gp). However,
as discussed in [Neapolitan, 2004], there are a number of potential problems in searching
for a DAG instead of a DAG pattern. Briefly, we discuss two of the problems. The first is
efficiency. By searching over DAGs, the algorithm can waste time encountering and rescoring
DAGs in the same Markov equivalence class. A second problem has to do with priors. If we
search over DAGs, we are implicitly assigning equal priors to all DAGs, which means that
DAG patterns containing more DAGs will have higher prior probability. For example, if
there are n nodes, the complete DAG pattern (representing no conditional independencies)
contains n! DAGs, whereas the pattern with no edges (representing that all variables are
mutually independent) contains just one DAG. On the other hand, Gillispie and Pearlman
[2001] show that an asymptotic ratio of the number of DAGs to DAG patterns equal to about
3.7 is reached when the number of nodes is only 10. Therefore, on average, the number of
DAGs in a given equivalence class is small, and perhaps our concern about searching over
DAGs is not necessary. Contrariwise, in simulations performed by Chickering [2001], the
average number of DAGs in the equivalence classes over which his algorithm searched were
always greater than 8.5 and in one case was 9.7× 1019.

i
i

i
i

i
i

i
i

11.2 Score-Based Structure Learning 297

When performing model selection, assigning equal priors to DAGs is not necessarily a
serious problem, as we will finally select a high-scoring DAG that corresponds to a high-
scoring DAG pattern. However, as discussed in [Neapolitan, 2004], it can be a more serious
problem in the case of model averaging (See Section 11.2.8).

The GES Algorithm In 1997, Meek developed an algorithm called Greedy Equivalent
Search (GES), which searches over DAG patterns and has the following property: If there
is a DAG pattern faithful to P , as the size of the dataset approaches infinity, the limit of
the probability of finding a DAG pattern faithful to P is equal to 1. In 2002 Chickering
proved this is the case. We describe the algorithm next.

In what follows we denote the equivalence class represented by DAG pattern gp by gp.
GES is a two-phase algorithm that searches over DAG patterns. In the first phase, DAG
pattern gp′ is in the neighborhood of DAG pattern gp, denoted Nbhd+(gp), if there is some
DAG G ∈ gp for which a single edge addition results in a DAG G′ ∈ gp′. Starting with the
DAG pattern containing no edges, we repeatedly replace the current DAG pattern gp by the
DAG pattern in Nbhd+(gp) that has the highest score of all DAG patterns in Nbhd+(gp).
We do this until there is no DAG pattern in Nbhd+(gp) that increases the score.

The second phase is completely analogous to the first phase. In this phase, DAG pattern
gp′ is in the neighborhood of DAG pattern gp, denoted Nbhd−(gp), if there is some DAG
G ∈ gp for which a single edge deletion results in a DAG G′ ∈ gp′. Starting with the DAG
pattern obtained in the first phase, we repeatedly replace the current DAG pattern gp by the
DAG pattern in Nbhd−(gp) that has the highest score of all DAG patterns in Nbhd−(gp).
We do this until there is no DAG pattern in Nbhd−(gp) that increases the score.

It is left as an exercise to write this algorithm.
Neapolitan [2004] discusses other algorithms that search over DAG patterns.

11.2.8 Model Averaging

Heckerman et al. [1999] illustrate that when the number of variables is small and the amount
of data is large, one structure can be orders of magnitude more likely than any other. In
such cases, model selection yields good results. However, recall that in Example 11.3 we
had few data, we obtained P (G1|D) = .517 and P (G2|D) = .483, and we chose (learned)
DAG G1 because it was most probable. Then in Example 11.5 we used a Bayesian network
containing DAG G1 to do inference for Sam. Because the probabilities of the two models
are so close, it seems somewhat arbitrary to choose G1. So, model selection does not seem
appropriate. Next, we describe another approach.

Instead of choosing a single DAG and then using it to do inference, we could use the
Law of Total Probability to do the inference as follows: We perform the inference using each
DAG and multiply the result (a probability value) by the posterior probability of the DAG.
This is called model averaging.

Example 11.14 Recall that based on the data in Example 11.3, we learned that

P (G1|D) = .517

and

P (G2|D) = .483.

In Example 11.5 we updated a Bayesian network containing G1 based on the data to obtain
the Bayesian network in Figure 11.4 (a). If in the same way we update a Bayesian network
containing G2, we obtain the Bayesian network in Figure 11.4 (b). Given that Sam has never

i
i

i
i

i
i

i
i

298 Chapter 11 Learning Probabilistic Model Structure

J F

a
11

 = 7

b
11

 = 5

a
21

 = 5

b
21

 = 2

a
22

 = 2

b
22

 = 3

P(j
1
) = a

11
/ (a

11
+b

11
) =7/12 P(f

1
| j

1
) = a

21
/ (a

21
+b

21
) = 5/7

P(f
1

| j
2
) = a

22
/ (a

22
+b

22
) = 2/5

(a)

J F

a
11

 = 7

b
11

 = 5

a
21

 = 7

b
21

 = 5

P(j
1
) = a

11
/ (a

11
+b

11
) =7/12 P(f

1
) = a

21
/ (a

21
+b

21
) = 7/12

(b)

Figure 11.4 Updated Bayesian network for learning based on the data discussed in Exam-
ples 11.3 and 11.5.

defaulted on a loan (F = f2), we can then use model averaging to compute the probability
that Sam is a white-collar worker, as follows:1

P (j1|f1,D) = P (j1|f1,G1)P (G1|D) + P (j1|f1,G2)P (G2|D)

= (.714) (.517) + (7/12)(.483) = .651.

The result that P (j1|f1,G1) = .714 was obtained in Example 11.5, although in that example
we did not show the dependence on G1 because that DAG was the only DAG considered.
The result that P (j1|f1,G2) = 7/12 is obtained directly from the Bayesian network in Figure
11.4 (b) because J and F are independent in that network. �

Example 11.14 illustrated using model averaging to do inference. The following example
illustrates using it to learn partial structure.

Example 11.15 Suppose we have three random variables X1, X2, and X3. Then the
possible DAG patterns are the ones in Figure 11.5. We might be interested in the probability
that a feature of the DAG pattern is present. For example, we might be interested in the
probability that there is an edge between X1 and X2. Given the five DAG patterns in which
there is an edge, this probability is 1; and given the six DAG patterns in which there is no
edge, this probability is 0. Let gp denote a DAG pattern. If we let F be a random variable
whose value is present if a feature is present,

P (F = present|D) =
∑
gp

P (F = present|gp,D)P (gp|D)

=
∑
gp

P (F = present|gp)P (gp|D),

where

P (F = present|gp) =

{
1 if the feature is present in gp
0 if the feature is not present in gp.

�
1Note that we substitute P (G1|D) for P (G1|f1,D). They are not exactly equal, but we are assuming that

the dataset is sufficiently large that the dependence of the DAG models on the current case can be ignored.

i
i

i
i

i
i

i
i

11.2 Score-Based Structure Learning 299

X
1

X
2

X
3

X
1

X
2

X
3

X
1

X
2

X
3

X
1

X
3

X
2

X
1

X
2

X
3

X
1

X
3

X
2

X
1

X
2

X
3

X
1

X
3

X
2

X
2

X
1

X
3

X
1

X
2

X
3

X
2

X
1

X
3

Figure 11.5 The 11 DAG patterns when there are three nodes.

You may wonder what event a feature represents. For example, what event does an edge
between X1 and X2 represent? This event is the event that X1 and X2 are not independent
and are not conditionally independent given X3 in the actual relative frequency distribution
of the variables. Another possible feature is that there is a directed edge from X1 to X2.
This feature is the event that, assuming that the relative frequency distribution admits a
faithful DAG representation, there is a directed edge from X1 to X2 in the DAG pattern
faithful to that distribution. Similarly, the feature that there is a directed path from X1 to
X2 represents the event that there is a directed path from X1 to X2 in the DAG pattern
faithful to that distribution.

Given that we are only discussing the relative frequency distribution, these events are
ordinarily not of great interest. However, if we are discussing causality, they tell us something
about the causal relationships among the variables. For example, recall that in Example
7.16 we mentioned that the proteins produced by one gene have a causal effect on the level of
mRNA (called the gene expression level) of another gene, and researchers try to learn these
causal effects from data. Ordinarily there are thousands of genes (variables), but typically we
have at most only a few thousand data items. In such cases, there are often many structures
that are equally likely. So, choosing one particular structure is somewhat arbitrary. However,
in these cases we are not always interested in learning the entire structure. That is, rather
than needing the structure for inference and decision making, we are only interested in
learning relationships among some of the variables. In particular, in the gene expression
example, we are interested in the dependence and causal relationships between the expression
levels of certain genes (see [Lander and Shenoy, 1999]).

i
i

i
i

i
i

i
i

300 Chapter 11 Learning Probabilistic Model Structure

11.2.9 Approximate Model AveragingF

As is the case for model selection, when the number of possible DAGs is large, we cannot
average over all DAGs. In these situations, we heuristically search for high-probability
DAGs, and then we average over them. In particular, in the gene expression example,
because there are thousands of variables, we could not average over all DAGs. Approximate
model averaging is discussed next.

11.2.9.1 Approximate Model Averaging Using MCMC

Next we discuss how we can heuristically search for high-probability structures and then
average over them using the Markov Chain Monte Carlo (MCMC) method.

Recall our two examples of model averaging (Examples 11.14 and 11.15). The first
involved computing a conditional probability over all possible DAGs as follows:

P (x|y,D) =
∑
G
P (x|y,G,D)P (G|a,D).

The second involved computing the probability a feature is present as follows:

P (F = present|D) =
∑
gp

P (F = present|gp)P (gp|D).

In general, these problems involve some function of the DAG or DAG pattern and possibly
the data and a probability distribution of the DAGs or DAG patterns conditional on the
data. If we average over DAG patterns, we can represent the general problem to be the
determination of ∑

gp

f(gp,D)P (gp|D), (11.21)

where f is some function of gp and possibly D, and P is some probability distribution of the
DAG patterns. Although we represented the problem in terms of DAG patterns, we could
sum over DAGs instead.

To approximate the value of Expression 11.21 using MCMC, our stationary distribution
r is P (gp|D). Ordinarily we can compute P (D|gp) but not P (gp|D). However, if we assume
that the prior probability P (gp) is the same for all DAG patterns,

P (gp|D) =
P (D|gp)P (gp)

P (D)

= kP (D|gp)P (gp),

where k does not depend on gp. If we use Equality 11.17 or 11.18 as our expression for α,
k cancels out of the expression, which means that we can use P (D|gp) in the expression for
α. Note that we do not have to assign equal prior probabilities to all DAG patterns. That
is, we could use P (D|gp)P (gp) in the expression for α also.

If we average over DAGs instead of DAG patterns, the problem is the determination of∑
G
f(G,D)P (G|D),

where f is some function of G and possibly D, and P is some probability distribution of the
DAGs. As is the case for DAG patterns, if we assume that the prior probability P (G) is the
same for all DAGs, then P (G|D) = kP (D|G), and we can use P (D|G) in the expression for α.
However, we must realize what this assumption entails. If we assign equal prior probabilities
to all DAGs, DAG patterns containing more DAGs will have higher prior probability.

i
i

i
i

i
i

i
i

11.2 Score-Based Structure Learning 301

As noted previously, when we perform model selection, assigning equal prior probabilities
to DAGs is not necessarily a serious problem, because we will finally select a high-scoring
DAG that corresponds to a high-scoring DAG pattern. However, in performing model av-
eraging, a given DAG pattern will be included in the average according to the number
of DAGs in the pattern. For example, there are three DAGs corresponding to the DAG
pattern X − Y − Z but only one corresponding to DAG pattern X → Y ← Z. So, by
assuming that all DAGs have the same prior probability, we are assuming that the prior
probability that the actual relative frequency distribution has the set of conditional indepen-
dencies {IP (X,Z|Y)} is three times the prior probability that it has the set of conditional
independencies {IP (X,Z)}. Even more dramatic, there are n! DAGs corresponding to the
complete DAG pattern and only one corresponding to the DAG pattern with no edges. So,
we are assuming that the prior probability that there are no conditional independencies is
far greater than the prior probability that the variables are mutually independent.

This assumption has consequences as follows: Suppose, for example, that the correct
DAG pattern is X : Y , which denotes the DAG pattern with no edge, and the feature of
interest is whether X and Y are independent. Because the feature is present, our results are
better if we confirm it. Therefore, averaging over DAG patterns has a better result because,
by averaging over DAG patterns, we are assigning a prior probability of 1/2 to the feature,
whereas by averaging over DAGs, we are only assigning a prior probability of 1/3 to the
feature. On the other hand, if the correct DAG pattern is X−Y , the feature is not present,
which means that our results are better if we disconfirm. Therefore, averaging over DAGs
is better.

We see then that we need to look at the ensemble of all relative frequency distributions
rather than any one to discuss which method might be “correct.” If relative frequency
distributions are distributed uniformly in nature and we assign equal prior probabilities to
all DAG patterns, then P (F = present|D), obtained by averaging over DAG patterns, is the
relative frequency with which we are investigating a relative frequency distribution with this
feature when we are observing these data. So, averaging over DAG patterns is “correct.”
On the other hand, if relative frequency distributions are distributed in nature according to
the number of DAGs in DAG patterns and we assign equal prior probabilities to all DAGs,
then P (F = present|D), obtained by averaging over DAGs, is the relative frequency with
which we are investigating a relative frequency distribution with this feature when we are
observing these data. So, averaging over DAGs is “correct.” Although it seems reasonable
to assume that relative frequency distributions are distributed uniformly in nature, some
feel that a relative frequency distribution, represented by a DAG pattern containing a larger
number of DAGs, may occur more often because there are more causal relationships that
can give rise to it.

11.2.9.2 Algorithms for Approximate Averaging over DAGs

Next we show MCMC algorithms for approximate averaging over DAGs.

Straightforward Algorithm Our set of states is the set of all possible DAGs containing
the variables in the application, and our stationary distribution is P (G|D), but as noted
previously, we can use P (D|G) in our expression for α. Recall from Section 11.2.7.2 that
Nbhd(G) is the set of all DAGs that differ from G by one edge addition, one edge deletion, or
one edge reversal. Clearly Gj ∈ Nbhd(Gi) if and only if Gi ∈ Nbhd(Gj). However, because
adding or reversing an edge can create a cycle, if Gj ∈ Nbhd(Gi) it is not necessarily true
that Nbhd(Gi) and Nbhd(Gj) contain the same number of elements. For example, if Gi and
Gj are the DAGs in Figures 11.6 (a) and (b), respectively, then Gj ∈ Nbhd(Gi). However,
Nbhd(Gi) contains five elements because adding the edge X3 → X1 would create a cycle,

i
i

i
i

i
i

i
i

302 Chapter 11 Learning Probabilistic Model Structure

X
1

X
2

X
3

X
1

X
2

X
3

(a) (b)

Figure 11.6 These DAGs are in each other’s neighborhoods, but their neighborhoods do
not contain the same number of elements.

whereas Nbhd(Gj) contains six elements. We create our transition matrix Q as follows: For
each pair of states Gi and Gj , we set

qij =

1

|Nbhd(Gi)|
Gj ∈ Nbhd(Gi)

0 Gj /∈ Nbhd(Gi)

,

where |Nbhd(Gi)| returns the number of elements in the set. Because Q is not symmetric,
we use Equality 11.17 rather than Equality 11.18 to compute αij . Specifically, our steps are
as follows:

1. If the DAG at the trial k is Gi, choose a DAG uniformly from Nbhd(Gi). Suppose
that DAG is Gj .

2. Choose the DAG for trial k + 1 to be Gj with probability

αij =

1

P (D|Gj)× |Nbhd(Gi)|
P (D|Gi)× |Nbhd(Gj)|

≥ 1

P (D|Gj) |Nbhd(Gi)|
P (D|Gi) |Nbhd(Gj)|

P (D|Gj)× |Nbhd(Gi)|
P (D|Gi)× |Nbhd(Gj)|

≤ 1

,

and to be Gi with probability 1− αij .

A Simplification It is burdensome to compute the sizes of the neighborhoods of the
DAGs in each step. Alternatively, we could include DAGs with cycles in the neighborhoods.
That is, Nbhd(Gi) is the set of all graphs (including ones with cycles) that differ from Gi by
one edge addition, one edge deletion, or one edge reversal. It is not hard to see that then
the size of every neighborhood is equal to n(n− 1). We therefore define

qij =

1

n(n− 1)
Gj ∈ Nbhd(Gi)

0 Gj /∈ Nbhd(Gi)

.

If we are currently in state Gi and we obtain a graph Gj that is not a DAG, we set P (D|Gj) =
0 (effectively making rj zero). In this way, αij is zero, the graph is not chosen, and we stay
at Gi in this step. Because Q is now symmetric, we can use Equality 11.18 to compute
αij . Notice that our theory was developed by assuming that all values in the stationary
distribution are positive, which is not currently the case. However, Tierney [1996] shows
that convergence also follows if we allow 0 values as discussed here.

Neapolitan [2004] develops a similar method that averages over DAG patterns.

i
i

i
i

i
i

i
i

11.3 Constraint-Based Structure Learning 303

L S

C

L S

C

L S

C

(a) (b) (c)

Figure 11.7 If the only conditional independency in P is IP (L, S|C), then P satisfies the
Markov condition with the DAGs in (a) and (b), and P satisfies the faithfulness condition
only with the DAG in (a).

11.3 Constraint-Based Structure Learning

Next we discuss a quite different structure learning technique called constraint-based
learning. In this approach, we try to learn a DAG from the conditional independencies in
the generative probability distribution P . First, we illustrate the constraint-based approach
by showing how to learn a DAG faithful to a probability distribution. This is followed by a
discussion of embedded faithfulness.

11.3.1 Learning a DAG Faithful to P

Recall that (G, P) satisfies the faithfulness condition if all and only the conditional inde-
pendencies in P are entailed by G. After discussing why we would want to learn a DAG
faithful to a probability distribution P , we illustrate learning such a DAG.

11.3.1.1 Why We Want a Faithful DAG

Consider again the objects in Figure 6.1. In Example 6.23, we let P assign 1/13 to each
object in the figure, and we defined these random variables on the set containing the objects:

Variable Value Outcomes Mapped to This Value
L l1 All objects containing an A

l2 All objects containing a B
S s1 All square objects

s2 All circular objects
C c1 All black objects

c2 All white objects

We then showed that L and S are conditionally independent given C. That is, using the
notation established in Section 6.2.2, we showed that

IP (L, S|C).

In Example 7.1, we showed that this implies that P satisfies the Markov condition with
the DAG in Figure 11.7 (a). However, P also satisfies the Markov condition with the
complete DAG in Figure 11.7 (b). P does not satisfy the Markov condition with the DAG
in Figure 11.7 (c) because that DAG entails IP (L, S) and this independency is not in P .
The DAG in Figure 11.7 (b) does not represent P very well because it does not entail
a conditional independency that is in P , namely IP (L, S|C). This is a violation of the

i
i

i
i

i
i

i
i

304 Chapter 11 Learning Probabilistic Model Structure

X Y

X Y

X Y

(a) (b)

Figure 11.8 If the set of conditional independencies is {IP (X,Y)}, we must have the DAG
in (b), whereas if it is ∅, we must have one of the DAGs in (a).

faithfulness condition. Of the DAGs in Figure 11.7, only the one in Figure 11.7 (a) is
faithful to P .

If we can find a DAG that is faithful to a probability distribution P , we have achieved our
goal of representing P succinctly. That is, if there are DAGs faithful to P , then those DAGs
are the smallest DAGs that include P (see [Neapolitan, 2004]). We say DAGs because if a
DAG is faithful to P , then clearly any Markov-equivalent DAG is also faithful to P . For
example, the DAGs L → C → S and S ← C ← L, which are Markov equivalent to the
DAG L← C → S, are also faithful to the probability distribution P concerning the objects
in Figure 6.1. As we shall see, not every probability distribution has a DAG that is faithful
to it. However, if there are DAGs faithful to a probability distribution, it is relatively easy
to discover them. We discuss learning a faithful DAG next.

11.3.1.2 Learning a Faithful DAG

We assume that we have a sample of entities from the population over which the random
variables are defined, and we know the values of the variables of interest for the entities in the
sample. The sample could be a random sample, or it could be obtained from passive data.
From this sample, we have deduced the conditional independencies among the variables. A
method for deducing conditional independencies and obtaining a measure of our confidence
in them is described in [Spirtes et al., 1993; 2000] and [Neapolitan, 2004]. Our confidence
in the DAG we learn is no greater than our confidence in these conditional independencies.

Example 11.16 It is left as an exercise to show that the data shown in Example 11.1
exhibit this conditional independency:

IP (Height,Wage|Sex).

Therefore, from these data we can conclude, with a certain measure of confidence, that this
conditional independency exists in the population at large. �

Next we give a sequence of examples in which we learn a DAG that is faithful to the
probability distribution of interest. These examples illustrate how a faithful DAG can be
learned from the conditional independencies if one exists. We stress again that the DAG
is faithful to the conditional independencies we have learned from the data. We are not
certain that these are the conditional independencies in the probability distribution for the
entire population.

Example 11.17 Suppose V is our set of observed variables, V = {X,Y }, and the set of
conditional independencies in P is

{IP (X,Y)}.

i
i

i
i

i
i

i
i

11.3 Constraint-Based Structure Learning 305

X Z Y

X Z Y

X Z Y

X Z Y

(a) (b)

Figure 11.9 If the set of conditional independencies is {IP (X,Y)}, we must have the DAG
in (b); if it is {IP (X,Y |Z)}, we must have one of the DAGs in (a).

We want to find a DAG faithful to P . We cannot have either of the DAGs in Figure 11.8
(a). The reason is that these DAGs do not entail that X and Y are independent, which
means the faithfulness condition is not satisfied. So, we must have the DAG in Figure 11.8
(b). We conclude that P is faithful to the DAG in Figure 11.8 (b). �

Example 11.18 Suppose V = {X,Y } and the set of conditional independencies in P is the
empty set

∅.

That is, there are no independencies. We want to find a DAG faithful to P . We cannot
have the DAG in Figure 11.8 (b). The reason is that this DAG entails that X and Y are
independent, which means that the Markov condition is not satisfied. So, we must have one
of the DAGs in Figure 11.8 (a). We conclude that P is faithful to both the DAGs in Figure
11.8 (a). Note that these DAGs are Markov equivalent. �

Example 11.19 Suppose V = {X,Y, Z}, and the set of conditional independencies in P is

{IP (X,Y)}.

We want to find a DAG faithful to P . There can be no edge between X and Y in the DAG
owing to the reason given in Example 11.17. Furthermore, there must be edges between
X and Z and between Y and Z owing to the reason given in Example 11.18. We cannot
have any of the DAGs in Figure 11.9 (a). The reason is that these DAGs entail IP (X,Y |Z),
and this conditional independency is not present. So, the Markov condition is not satisfied.
Furthermore, the DAGs do not entail IP (X,Y). So, the DAG must be the one in Figure
11.9 (b). We conclude that P is faithful to the DAG in Figure 11.9 (b). �

Example 11.20 Suppose V = {X,Y, Z} and the set of conditional independencies in P is

{IP (X,Y |Z)}.

We want to find a DAG faithful to P . Owing to reasons similar to those given before,
the only edges in the DAG must be between X and Z and between Y and Z. We cannot
have the DAG in Figure 11.9 (b). The reason is that this DAG entails I(X,Y), and this
conditional independency is not present. So, the Markov condition is not satisfied. So, we
must have one of the DAGs in Figure 11.9 (a). We conclude that P is faithful to all the
DAGs in Figure 11.9 (a). �

i
i

i
i

i
i

i
i

306 Chapter 11 Learning Probabilistic Model Structure

Z

X Y

W

(a)

Z

X Y

W

(b)

Z

X Y

W

(c)

Figure 11.10 If the set of conditional independencies is {Ip(X, {Y,W}), IP (Y, {X,Z})},
we must have the DAG in (c).

We now state a theorem whose proof can be found in [Neapolitan, 2004]. At this point
your intuition should suspect that it is true.

Theorem 11.5 If (G, P) satisfies the faithfulness condition, then there is an edge between
X and Y if and only if X and Y are not conditionally independent given any set of variables.

Example 11.21 Suppose V = {X,Y, Z,W} and the set of conditional independencies in P
is

{Ip(X,Y), IP (W, {X,Y }|Z)}.

We want to find a DAG faithful to P . Owing to Theorem 11.5, the links (edges without
regard for direction) must be as shown in Figure 11.10 (a). We must have the directed
edges shown in Figure 11.10 (b) because we have Ip(X,Y). Therefore, we must also have
the directed edge shown in Figure 11.10 (c) because we do not have IP (W,X). We conclude
that P is faithful to the DAG in Figure 11.10 (c). �

Example 11.22 Suppose V = {X,Y, Z,W} and the set of conditional independencies in P
is

{IP (X, {Y,W}), IP (Y, {X,Z})}.

We want to find a DAG faithful to P . Owing to Theorem 11.5, we must have the links
shown in Figure 11.11 (a). Now, if we have the chain X → Z → W , X ← Z ← W , or
X ← Z → W , then we do not have IP (X,W). So, we must have the chain X → Z ← W .
Similarly, we must have the chain Y → W ← Z. So, our graph must be the one in Figure
11.11 (b). However, this graph is not a DAG. The problem here is that there is no DAG
faithful to P . �

Example 11.23 Suppose we have the same vertices and conditional independencies as in
Example 11.22. As shown in that example, there is no DAG faithful to P . However, this
does not mean we cannot find a more succinct way to represent P than using a complete
DAG. P satisfies the Markov condition with each of the DAGs in Figure 11.12. That is, the
DAG in Figure 11.12 (a) entails

{IP (X,Y), IP (Y,Z)}

i
i

i
i

i
i

i
i

11.3 Constraint-Based Structure Learning 307

X Y

Z W

X Y

Z W

(a) (b)

Figure 11.11 If the set of conditional independencies is {IP (X, {Y,W}), IP (Y, {X,Z})}
and we try to find a DAG faithful to P , we obtain the graph in (b), which is not a DAG.

X Y

Z W

X Y

Z W

(a) (b)

Figure 11.12 If the set of conditional independencies is {IP (X, {Y,W}), IP (Y, {X,Z})},
P satisfies the Markov condition with both these DAGs.

and these conditional independencies are both in P , whereas the DAG in Figure 11.12 (b)
entails

{IP (X,Y), IP (X,W)}

and these conditional independencies are both in P . However, P does not satisfy the
faithfulness condition with either of these DAGs because the DAG in Figure 11.12 (a)
does not entail IP (X,W), whereas the DAG in Figure 11.12 (b) does not entail IP (Y, Z).

Each of these DAGs is as succinct as we can represent the probability distribution. So,
when there is no DAG faithful to a probability distribution P , we can still represent P
much more succinctly than we would by using the complete DAG. A structure learning
algorithm tries to find the most succinct representation. Depending on the number of
alternatives of each variable, one of the DAGs in Figure 11.12 may actually be a more
succinct representation than the other because it contains fewer parameters. A constraint-
based learning algorithm could not distinguish between the two, but a score-based one could.
See [Neapolitan, 2004] for a complete discussion of this matter. �

11.3.2 Learning a DAG in which P Is Embedded Faithfully

In a sense, we compromised in Example 11.23 because the DAG we learned did not entail all
the conditional independencies in P . This is fine if our goal is to learn a Bayesian network
that will later be used to do inference. However, another application of structure learning

i
i

i
i

i
i

i
i

308 Chapter 11 Learning Probabilistic Model Structure

X Y

Z W

H

Figure 11.13 If the set of conditional independencies in P is {IP (X, {Y,W}),
IP (Y, {X,Z})}, then P is embedded faithfully in this DAG.

is causal learning, which is discussed in the next section. When we are learning causes it
would be better to find a DAG in which P is embedded faithfully. We discuss embedded
faithfulness next.

Definition 11.2 Suppose we have a joint probability distribution P of the random variables
in some set V and a DAG G = (W,E) such that V ⊆W. We say that (G, P) satisfy the
embedded faithfulness condition if all and only the conditional independencies in P
are entailed by G, restricted to variables in V. Furthermore, we say that P is embedded
faithfully in G.�

Example 11.24 Again suppose V = {X,Y, Z,W} and the set of conditional independencies
in P is

{IP (X, {Y,W}), IP (Y, {X,Z})}.

Then P is embedded faithfully in the DAG in Figure 11.13. It is left as an exercise to show
this. By including the hidden variable H in the DAG, we are able to entail all and only the
conditional independencies in P restricted to variables in V. �

11.4 Application: MENTOR

To illustrate Bayesian network learning, we present the details of one large-scale application.

Mani et al. [1997] developed MENTOR, a system that predicts the risk of mental
retardation (MR) in infants. Specifically, the system can determine the probabilities of the
child later obtaining scores in four different ranges on the Raven Progressive Matrices Test,
which is a test of cognitive function. The probabilities are conditional on values of variables
such as the mother’s age at time of birth, whether the mother had recently had an X-ray,
whether labor was induced, etc.

11.4.1 Developing the Network

The structure of the Bayesian network used in MENTOR was created in the following three
steps:

i
i

i
i

i
i

i
i

11.4 Application: MENTOR 309

Table 11.3 The Variables Used in MENTOR

Variable What the Variable Represents
MOM RACE Mother’s race classified as White or non-White.

MOMAGE BR
Mother’s age at time of child’s birth categorized as 14–19 years,

20–34 years, or ≥ 35 years.

MOM EDU
Mother’s education categorized as ≤ 12 and did not graduate

high school, graduated high school, and > high school.

DAD EDU Father’s education categorized same as mother’s.

MOM DIS

Yes if mother had one or more of lung trouble, heart trouble,

high blood pressure, kidney trouble, convulsions, diabetes,

thyroid trouble, anemia, tumors, bacterial disease, measles,

chicken pox, herpes simplex, eclampsia; no otherwise.

FAM INC Family income categorized as < $10,000 or ≥ $10,000.

MOM SMOK Yes if mother smoked during pregnancy; no otherwise.

MOM ALC
Mother’s alcoholic drinking level classified as mild (0–6 drinks

per week), moderate (7–20), or severe (>20).

PREV STILL Yes if mother previously had a stillbirth; no otherwise.

PN CARE Yes if mother had prenatal care; no otherwise.

MOM XRAY
Yes if mother had been X-rayed in the year prior to or during

the pregnancy; no otherwise.

GESTATN
Period of gestation categorized as premature (≤ 258 days),

or normal (259–294 days), or postmature (≥ 295 days).

FET DIST

Fetal distress classified as yes if there was prolapse of cord,

mother had a history of uterine surgery, there was uterine

rupture or fever at or just before delivery, or there was an

abnormal fetal heart rate; no otherwise.

INDUCE LAB Yes if mother had induced labor; no otherwise.

C SECTION Yes if delivery was a caesarean section; no if it was vaginal.

CHLD GEND Gender of child (male or female).

BIRTH WT Birth weight categorized as low < 2500 g) or normal (≥ 2500 g).

RESUSCITN Yes if child had resuscitation; no otherwise.

HEAD CIRC Normal if head circumference is 20 or 21; abnormal otherwise.

CHLD ANOM

Child anomaly classified as yes if child has cerebral palsy,

hypothyroidism, spina binfida, Down’s syndrome,

chromosomal abnormality, anencephaly, hydrocephalus,

epilepsy, Turner’s syndrome, cerbellar ataxia, speech defect,

Klinefelter’s syndrome, or convulsions; no otherwise.

CHILD HPRB

Child’s health problem categorized as having a physical

problem, having a behavior problem, having both a physical

and a behavioral problem, or having no problem.

CHLD RAVN
Child’s cognitive level, measured by the Raven test,

categorized as mild MR, borderline MR, normal, or superior.

P MOM
Mother’s cognitive level, measured by the Peabody test,

categorized as mild MR, borderline MR, normal, or superior.

i
i

i
i

i
i

i
i

310 Chapter 11 Learning Probabilistic Model Structure

1. Mani et al. [1997] obtained the Child Health and Development Study (CHDS) dataset,
which is the dataset developed in a study concerning pregnant mothers and their
children. The children were followed through their teen years and included numerous
questionnaires, physical and psychological exams, and special tests. The study was
conducted by the University of California at Berkeley and the Kaiser Foundation. It
started in 1959 and continued into the 1980’s. There are approximately 6000 children
and 3000 mothers with IQ scores in the dataset. The children were either 5 years old
or 9 years old when their IQs were tested. The IQ test used for the children was the
Raven Progressive Matrices Test. The mothers’ IQs were also tested, and the test
used was the Peabody Picture Vocabulary Test.

Initially, Mani et al. [1997] identified 50 variables in the dataset that were thought to
play a role in the causal mechanism of mental retardation. However, they eliminated
those with weak associations to the Raven score, and finally used only 23 in their
model. The variables used are shown in Table 11.3.

After the variables were identified, they used the CB algorithm to learn a network
structure from the dataset. The CB Algorithm ([Singh and Valtorta, 1995]) uses the
constraint-based method to propose a total ordering of the nodes, and then uses a
modified version of Algorithm 9.1 (K2) to learn a DAG structure.

2. Mani et al. [1997] decided they wanted the network to be a causal network. So next
they modified the DAG according to the following three rules:

(a) Rule of Chronology: An event cannot be the parent of a second event that pre-
ceded the first event in time. For example, CHILD HPRB (child’s health problem)
cannot be the parent of MOM DIS (mother’s disease).

(b) Rule of Commonsense: The causal links should not go against common sense.
For example, DAD EDU (father’s education) cannot be a cause of MOM RACE

(mother’s race).

(c) Domain Rule: The causal links should not violate established domain rules.
For example, PN CARE (prenatal care) should not cause MOM SMOK (mater-
nal smoking).

3. Finally, the DAG was refined by an expert. The expert was a clinician who had 20 years
experience with children with mental retardation and other developmental disabilities.
When the expert stated there was no relationship between variables with a causal link,
the link was removed and new ones were incorporated to capture knowledge of the
domain causal mechanisms.

The final DAG specifications were input to HUGIN [Olesen et al., 1992] using the HUGIN
graphic interface. The output is the DAG shown in Figure 11.14.

After the DAG was developed, the conditional probability distributions were learned
from the CHDS dataset using the techniques shown in Chapters 6 and 7. After that, they
too were modified by the expert, resulting finally in the Bayesian network in MENTOR.

11.4.2 Validating MENTOR

In actual clinical cases, the diagnosis of mental retardation is rarely made after only a review
of history and physical examination. Therefore, we cannot expect MENTOR to do more
than indicate a risk of mental retardation by computing the probability of it. The higher the
probability the greater the risk. Mani et al. [1997] showed that, on average, children who

i
i

i
i

i
i

i
i

11.5 Software Packages for Learning 311

Figure 11.14 The DAG used in MENTOR (displayed using HUGIN).

were later determined to have mental retardation were found to be at greater risk than those
who were not. MENTOR can confirm a clinician’s assessment by reporting the probability
of mental retardation.

Mani et al. [1997] also compared the results of MENTOR with the judgments of an ex-
pert. The expert was in agreement with MENTOR’s assessments (conditional probabilities)
in seven of the nine cases.

11.5 Software Packages for Learning

Based on considerations such as those illustrated in Section 11.3.1, Spirtes et al. [1993, 2000]
developed an algorithm that finds the DAG faithful to P from the conditional independencies
in P when there is a DAG faithful to P . Spirtes et al. [1993, 2000] further developed
an algorithm that learns a DAG in which P is embedded faithfully from the conditional

i
i

i
i

i
i

i
i

312 Chapter 11 Learning Probabilistic Model Structure

independencies in P when such a DAG exists. These algorithms have been implemented in
the Tetrad software package [Scheines et al., 1994], which can be downloaded for free from
www.phil.cmu.edu/projects/tetrad/.

The Tetrad software package also has a module that uses the GES algorithm along with
the BIC score to learn a Bayesian network from data.

Some of the packages mentioned in Section 7.4.2 learn structure. Other Bayesian network
learning packages include the following:

• Belief Network Power Constructor (constraint-based approach),

www.cs.ualberta.ca/˜jcheng/bnpc.htm.

• Bayesware (structure and parameters), www.bayesware.com/.

• Bayes Net Toolbox, bnt.sourceforge.net/.

• Probabilistic Net Library, www.eng.itlab.unn.ru/?dir=139.

• bnlearn, http://www.bnlearn.com/.

11.6 Causal Learning

In many, if not most, applications the variables of interest have causal relationships to each
other. For example, the variables in Example 11.1 are causally related in that sex has a
causal effect on height and may have a causal effect on wage. If the variables are causally
related, we can learn something about their causal relationships when we learn the structure
of the DAG from data. However, we must make certain assumptions to do this. We discuss
these assumptions and causal learning next.

11.6.1 Causal Faithfulness Assumption

Recall from Section 7.3.2.2 that if we assume the observed probability distribution P of a
set of random variables V satisfies the Markov condition with the causal DAG G containing
the variables, we say we are making the causal Markov assumption, and we call (G, P) a
causal network. Furthermore, we concluded that the causal Markov assumption is justified
for a causal graph if the following conditions are satisfied:

1. There are no hidden common causes. That is, all common causes are represented in
the graph.

2. There are no causal feedback loops. That is, our graph is a DAG.

3. Selection bias is not present.

Recall the discussion concerning credit card fraud in Section 7.1. Suppose that both
fraud and sex do indeed have a causal effect on whether jewelry is purchased, and there are
no other causal relationships among the variables. Then the causal DAG containing these
variables is the one in Figure 11.15 (a). If we make the causal Markov assumption, we must
have IP (Fraud, Sex).

Suppose now that we do not know the causal relationships among the variables, we
make the causal Markov assumption, and we learn only the conditional independency
IP (Fraud, Sex) from data. Can we conclude that the causal DAG must be the one in
Figure 11.15 (a)? No, we cannot because P also satisfies the Markov condition with the
DAG in Figure 11.15 (b). This concept is a bit tricky to understand. However, recall that

www.phil.cmu.edu/projects/tetrad/
www.cs.ualberta.ca/~jcheng/bnpc.htm
www.bayesware.com/
www.eng.itlab.unn.ru/?dir=139
http://www.bnlearn.com/

i
i

i
i

i
i

i
i

11.6 Causal Learning 313

Fraud Sex

Jewelry

Fraud Sex

Jewelry

Fraud Sex

Jewelry

(a) (b) (c)

Figure 11.15 If the only causal relationships are that Fraud and Sex have causal influ-
ences on Jewelry, then the causal DAG is the one in (a). If we make the causal Markov
assumption, only the DAG in (c) is ruled out if we observe IP (Fraud, Sex).

we are assuming that we do not know the causal relationships among the variables. As
far as we know, they could be the ones in Figure 11.15 (b). If the DAG in Figure 11.15
(b) were the causal DAG, the causal Markov assumption would still be satisfied when the
only conditional independency is IP (Fraud, Sex), because that DAG satisfies the Markov
condition with P . So, if we make only the causal Markov assumption, we cannot distinguish
the causal DAGs in Figures 11.15 (a) and 11.15 (b) based on the conditional independency
IP (Fraud, Sex). The causal Markov assumption only enables us to rule out causal DAGs
that contain conditional independencies that are not in P . One such DAG is the one in
Figure 11.15 (c).

We need to make the causal faithfulness assumption to conclude that the causal DAG is
the one in Figure 11.15 (a). That assumption is as follows: If we assume that the observed
probability distribution P of a set of random variables V satisfies the faithfulness condition
with the causal G containing the variables, we say we are making the causal faithfulness
assumption. If we make the causal faithfulness assumption, then if we find a unique DAG
that is faithful to P , the edges in that DAG must represent causal influences. This is
illustrated by the following examples.

Example 11.25 Recall that in Example 11.19 we showed that if V = {X,Y, Z} and the
set of conditional independencies in P is

{IP (X,Y)},

the only DAG faithful to P is the one in Figure 11.9 (b). If we make the causal faithfulness
assumption, this DAG must be the causal DAG, which means we can conclude that X and
Y each cause Z. This is the exact same situation as that illustrated earlier concerning fraud,
sex, and jewelry. Therefore, if we make the causal faithfulness assumption, we can conclude
that the causal DAG is the one in Figure 11.15 (a) based on the conditional independency
IP (Fraud, Sex). �

Example 11.26 In Example 11.20 we showed that if V = {X,Y, Z} and the set of condi-
tional independencies in P is

{IP (X,Y |Z)},

all the DAGs in Figure 11.9 (a) are faithful to P . So, if we make the causal faithfulness
assumption, we can conclude that one of these DAGs is the causal DAG, but we do not
know which one. �

i
i

i
i

i
i

i
i

314 Chapter 11 Learning Probabilistic Model Structure

F D E

finasteride dihydro-testosterone erectile function

Figure 11.16 Finasteride and erectile function are independent.

Example 11.27 In Example 11.21 we showed that if V = {X,Y, Z,W} and the set of
conditional independencies in P is

{Ip(X,Y), IP (W, {X,Y }|Z)},

the only DAG faithful to P is the one in Figure 11.10 (c). So, we can conclude that X and
Y each cause Z and Z causes W . �

When is the causal faithfulness assumption justified? It requires the three conditions
mentioned previously for the causal Markov assumption plus one more, which we discuss
next. Recall from Section 8.2.1 that the causal relationships among finasteride (F), dihydro-
testosterone (D), and erectile dysfunction (E) have clearly been found to be those depicted
in Figure 11.16. However, as discussed in that section, we have IP (F,E|D). We would
expect a causal mediary to transmit an effect from its antecedent to its consequence, but in
this case it does not. As also discussed in Section 8.2.1, the explanation is that finasteride
cannot lower dihydro-testosterone levels beyond a certain threshold level, and that level is
all that is needed for erectile function. So, we have IP (F,E).

The Markov condition does not entail IP (F,E) for the causal DAG in Figure 11.16. It
only entails IP (F,E|D). So, the causal faithfulness assumption is not justified. If we learned
the conditional independencies in the probability distribution of these variables from data,
we would learn the following set of independencies:

{IP (F,E), IP (F,E|D)}.

There is no DAG that entails both these conditional independencies, so no DAG could be
learned from such data.

The causal faithfulness assumption is usually justified when the three conditions listed
previously for the causal Markov assumption are satisfied and when we do not have unusual
causal relationships, as in the finasteride example. So, the causal faithfulness assumption is
ordinarily justified for a causal graph if the following conditions are satisfied:

1. There are no hidden common causes. That is, all common causes are represented in
the graph.

2. There are no causal feedback loops. That is, our graph is a DAG.

3. Selection bias is not present.

4. All intermediate causes transmit influences from their antecedents to their conse-
quences.

11.6.2 Causal Embedded Faithfulness Assumption

It seems that the main exception to the causal faithfulness assumption (and the causal
Markov assumption) is the presence of hidden common causes. Even in the example con-
cerning sex, height, and wage (Example 11.1), perhaps there is a genetic trait that makes

i
i

i
i

i
i

i
i

11.6 Causal Learning 315

TN

F C

night job tuberculosis

fatigue positive

chest X-ray

TN

F C

night job tuberculosis

fatigue positive

chest X-ray

L

TN

F C

night job tuberculosis

fatigue positive

chest X-ray

H

(a) (b)

(c)

lung cancer

Figure 11.17 If the causal relationships are those shown in (a), P is not faithful to the
DAG in (b), but P is embedded faithfully in the DAG in (c).

people grow taller and also gives them some personality trait that helps them compete bet-
ter in the job market. Our next assumption eliminates the requirement that there are no
hidden common causes. If we assume that the observed probability distribution P of a set
of random variables V is embedded faithfully in a causal DAG containing the variables, we
say that we are making the causal embedded faithfulness assumption. The causal
embedded faithfulness assumption is usually justified when the conditions for the causal
faithfulness assumption are satisfied, except that hidden common causes may be present.

Next we illustrate the causal embedded faithfulness assumption. Suppose that the causal
DAG in Figure 11.17 (a) satisfies the causal faithfulness assumption. However, we only
observe V = {N,F,C, T}. Then the causal DAG containing the observed variables is the
one in Figure 11.17 (b). The DAG in Figure 11.17 (b) entails IP (F,C), and this conditional
independency is not entailed by the DAG in Figure 11.17 (a). Therefore, the observed

X Z Y

X Z Y

H

X Z Y

H

X Z Y

H
1

H
2

Figure 11.18 If we make the causal embedded faithfulness assumption and our set of
conditional independencies is {IP (X,Y)}, the causal relationships could be the ones in any
of these DAGs.

i
i

i
i

i
i

i
i

316 Chapter 11 Learning Probabilistic Model Structure

Z

X Y

W

H
1

H
2Z

X Y

W

Z

X Y

W

H
3

Z

X Y

W

H
1

H
2

H
3

(a) (b)

(c) (d)

Figure 11.19 If our set of conditional independencies is {IP (X,Y), IP (W, {X,Y }|Z)}, then
P is embedded faithfully in the DAGs in (a) and (b) but not in the DAGs in (c) and (d).

distribution P (V) does not satisfy the Markov condition with the causal DAG in Figure
11.17 (b), which means the causal faithfulness assumption is not warranted. However, P (V)
is embedded faithfully in the DAG in Figure 11.17 (c). So, the causal embedded faithfulness
assumption is warranted. Note that this example illustrates a situation in which we identify
four variables and two of them have a hidden common cause. That is, we have not identified
lung cancer as a feature of humans.

Let’s see how much we can learn about causal influences when we make only the causal
embedded faithfulness assumption.

Example 11.28 Recall that in Example 11.25, V = {X,Y, Z}, our set of conditional inde-
pendencies was

{IP (X,Y)},

and we concluded that X and Y each caused Z while making the causal faithfulness as-
sumption. However, the probability distribution is embedded faithfully in all the DAGs in
Figure 11.18. So, if we make only the causal embedded faithfulness assumption, it could
be that X causes Z, or it could be that X and Z have a hidden common cause. The same
holds for Y and Z. �

While making only the more reasonable causal embedded faithfulness assumption, we
were not able to learn any causal influences in the previous example. Can we ever learn a
causal influence while making only this assumption? The next example shows that we can.

Example 11.29 Recall that in Example 11.27, V = {X,Y, Z,W} and our set of conditional
independencies was

{IP (X,Y), IP (W, {X,Y }|Z)}.

i
i

i
i

i
i

i
i

11.6 Causal Learning 317

X Y

Z W

H
3

X Y

Z W

X Y

Z W

H

H
1

H
2

(a)

(b) (c)

Figure 11.20 If our set of conditional independencies is {IP (X, {Y,W}), IP (Y, {X,Z}),
we can conclude that Z and W have a hidden common cause.

In this case the probability distribution P is embedded faithfully in the DAGs in Figures
11.19 (a) and 11.19 (b). However, it is not embedded faithfully in the DAGs in Figure 11.19
(c) or 11.19 (d). The reason is that these latter DAGs entail IP (X,W), and we do not have
this conditional independency. That is, the Markov condition says X must be independent
of its nondescendents conditional on its parents. Because X has no parents, this means that
X must simply be independent of its nondescendents, and W is one of its nondescendents.
If we make the causal embedded faithfulness assumption, we conclude that Z causes W . �

Example 11.30 Recall that in Example 11.23, V = {X,Y, Z,W}, our set of conditional
independencies was

{IP (X, {Y,W}), IP (Y, {X,Z}),

and we obtained the graph in Figure 11.20 (a) when we tried to learn a DAG faithful to P .
We concluded that there is no DAG faithful to P . Then in Example 11.24 we showed that
P is embedded faithfully in the DAG in Figure 11.20 (c). P is also embedded faithfully in
the DAG in Figure 11.20 (b). If we make the causal embedded faithfulness assumption, we
conclude that Z and W have a hidden common cause. �

11.6.3 Application: College Student Retention Rate

Next we show a real application of using the theory just discussed to learn causal influences.
First, however, we review the edges in a causal graph.

When using a software package to learn causal influences, the graph learned has several
different types of edges, with each indicating a different conclusion about the causal rela-
tionship between the variables connected by the edge. Different packages may denote these
edges differently. Below is the notation used here.

i
i

i
i

i
i

i
i

318 Chapter 11 Learning Probabilistic Model Structure

Edge Causal Relationship
X − Y X causes Y or (exclusive) Y causes X;

or X and Y have a hidden common cause.
X → Y X causes Y or

X and Y have a hidden common cause;
and Y does not cause X.

X � Y X causes Y .
X ↔ Y X and Y have a hidden common cause.

In the above, when we do not denote an “or” as exclusive, it is not exclusive. There is one
additional restriction. If we have the chain X − Y − Z, we cannot have two causal edges
with their heads at node Y . For example, we could not have node X causing node Y and
nodes Y and Z having a hidden common cause.

The example now follows. Using the database collected by the U.S. News and World
Report magazine for the purpose of college ranking, Druzdzel and Glymour [1999] analyzed
the influences that affect university student retention rate. By “student retention rate” we
mean the percent of entering freshmen who end up graduating from the university at which
they initially matriculate. Low student retention rate is a major concern at many American
universities, as the mean retention rate over all American universities is only 55%.

The database provided by the U.S. News and World Report magazine contains records
for 204 U.S. universities and colleges identified as major research institutions. Each record
consists of over 100 variables. The data were collected separately for the years 1992 and
1993. Druzdzel and Glymour [1999] selected the following eight variables as being most
relevant to their study:

Variable What the Variable Represents
grad Fraction of entering students who graduate from the institution
rejr Fraction of applicants who are not offered admission
tstsc Average standardized score of incoming students
tp10 Fraction of incoming students in the top 10% in high school
acpt Fraction of students who accept the institution’s admission offer
spnd Average educational and general expenses per student
sfrat Student/faculty ratio
salar Average faculty salary

Druzdzel and Glymour [1999] used Tetrad II [Scheines et al., 1994] to learn causal in-
fluences from the data. Tetrad II allows the user to specify a temporal ordering of the
variables. If variable Y precedes X in this order, the algorithm assumes there can be no
path from X to Y in any DAG in which the probability distribution of the variables is
embedded faithfully. It is called a temporal ordering because in applications to causality
if Y precedes X in time, we would assume X could not cause Y . Druzdzel and Glymour
[1999] specified the following temporal ordering for the variables in this study:

spnd, sfrat, salar
rejr, acpt
tstsc, tp10
grad

Their reasons for this ordering are as follows: They believed the average spending per student
(spnd), the student/teacher ratio (sfrat), and the faculty salary (salar) are determined
based on budget considerations and are not influenced by any of the other five variables.
Furthermore, they placed rejection rate (rejr) and the fraction of students who accept the

i
i

i
i

i
i

i
i

11.6 Causal Learning 319

tp10

acpt rejr spnd

tstsc

salar

grad sfrat

tp10

acpt rejr spnd

tstsc

salar

grad sfrat

tp10

acpt rejr spnd

tstsc

salar

grad sfrat

tp10

acpt rejr spnd

tstsc

salar

grad sfrat

= .2 = .1

= .05
 = .01

Figure 11.21 The graphs Tetrad II learned from U.S. News and World Report ’s 1992
database.

i
i

i
i

i
i

i
i

320 Chapter 11 Learning Probabilistic Model Structure

institution’s admission offer (acpt) ahead of average test scores (tstsc) and class standing
(tp10) because the values of these latter two variables are only obtained from matriculating
students. Finally, they assumed the graduate rate (grad) does not cause any of the other
variables.

Tetrad II allows the user to enter a significance level. A significance level of α means
the probability of rejecting a conditional independency hypothesis, when it is true, is α.
Therefore, the smaller the value of α is, the less likely we are to reject a conditional in-
dependency, and therefore the sparser our resultant graph. Figure 11.21 shows the graphs
which Druzdzel and Glymour [1999] learned from the 1992 database, provided by U.S. News
and World Report, using significance levels of .2, .1, .05, and .01.

Although different graphs were obtained at different levels of significance, all the graphs
in Figure 11.21 show that the average standardized test score (tstsc) has a direct causal
influence on graduation rate (grad), and no other variable has a direct causal influence on
grad. The results for the 1993 database were not as overwhelming, but they too indicated
tstsc to be the only direct causal influence of grad.

To test whether the causal structure may be different for top research universities,
Druzdzel and Glymour [1999] repeated the study using only the top 50 universities ac-
cording to the ranking of U.S. News and World Report. The results were similar to those
for the complete database.

These results indicate that although factors such as spending per student and faculty
salary may have an influence on graduation rates, they do so only indirectly by affecting
the standardized test scores of matriculating students. If the results correctly model reality,
retention rates can be improved by bringing in students with higher test scores in any way
whatsoever. Indeed, in 1994, Carnegie Mellon changed its financial aid policies to assign a
portion of its scholarship fund on the basis of academic merit. Druzdzel and Glymour [1999]
noted that this resulted in an increase in the average test scores of matriculating freshman
classes and an increase in freshman retention.

11.7 Class Probability Trees

Recall that Bayesian networks represent a large joint distribution of random variables suc-
cinctly. Furthermore, we can use a Bayesian network to compute the conditional probability
of any variable(s) of interest given values of some other variables. This is most useful when
there is no particular variable that is our target, and we want to use the model to determine
conditional probabilities of different variables depending on the situation. However, in some
applications there is a single target variable, and we are only concerned with the probability
of the values of that variable given values of other variables. In situations like this, we can
certainly model the problem using a Bayesian network. However, there are other techniques
available for modeling problems that concentrate on a target variable. Standard parametric
statistical technical techniques include linear and logistic regression [Anderson et al., 2007].
The machine learning community developed a quite different method, called class proba-
bility trees, for handling discrete target variables. This method, which we discuss next,
makes no special assumptions about the probability distribution.

11.7.1 Theory of Class Probability Trees

Suppose we are interested in whether an individual might buy some particular product.
Suppose further that income, sex, and whether the individual is mailed a flyer all have an
influence on whether the individual buys, and we articulate three ranges of income, namely
low, medium, and high. Then our variables and their values are as follows:

i
i

i
i

i
i

i
i

11.7 Class Probability Trees 321

Target Variable Values
Buy {no, yes}

Predictor Variables Values
Income {low,medium, high}
Sex {male, female}

Mailed {no, yes}

There are 3×2×2 = 12 combinations of values of the predictor variables. We are interested in
the conditional probability of Buy given each of these combinations of values. For example,
we are interested in

P (Buy = yes|Income = low, Sex = female,Mailed = yes).

We can store these 12 conditional probabilities using a class probability tree. A complete
class probability tree has stored at its root one of the predictors (say Income). There is
one branch from the root for each value of the variable stored at the root. The nodes at level
1 in the tree each stores the same second predictor (say Sex). There is one branch from each
of those nodes for each value of the variable stored at the node. We continue down the tree
until all predictors are stored. The leaves of the tree store the target variable along with the
conditional probability of the target variable given the values of the predictors in the path
leading to the leaf. In our current example there are 12 leaves, one for each combination
of values of the predictors. If there are many predictors, each with quite a few values, a
complete class probability tree can become quite large. Aside from the storage problem, it
might be hard to learn a large tree from data. However, some conditional probabilities may
be the same for two or more combinations of values of the predictors. For example, the
following four conditional probabilities may all be the same:

P (Buy = yes|Income = low, Sex = female,Mailed = yes)

P (Buy = yes|Income = low, Sex = male,Mailed = yes)

P (Buy = yes|Income = high, Sex = female,Mailed = yes)

P (Buy = yes|Income = high, Sex = male,Mailed = yes).

In this case we can represent the conditional probabilities more succinctly using the class
probability tree in Figure 11.22. There is just one branch from the Income node for the two
values low and high because the conditional probability is the same for these two values.
Furthermore, this branch leads directly to a Mailed node because the value of Sex does not
matter when Income is low or high.

We call the set of edges emanating from an internal node in a class probability tree a
split, and we say there is a split on the variable stored at the node. For example, the root
in the tree in Figure 11.22 is a split on the variable Income.

To retrieve a conditional probability from a class probability tree, we start at the root and
proceed to a leaf following the branches that have the values on which we are conditioning.
For example, to retrieve P (Buy = yes|Income = medium, Sex = female,Mailed = yes)
from the tree in Figure 11.22, we proceed to the right from the Income node, then to right
from the Sex node, and, finally, to the left from the Mailed node. We then retrieve the
conditional probability value .7. In this way, we obtain

P (Buy = yes|Income = medium, Sex = female,Mailed = yes) = .7.

The purpose of a class probability tree learning algorithm is to learn from data a tree
that best represents the conditional probabilities of interest. This is called “growing the

i
i

i
i

i
i

i
i

322 Chapter 11 Learning Probabilistic Model Structure

Mailed Sex

Mailed Mailed

Income

P(Buy = yes) = .5

P(Buy = no) = .5

P(Buy = yes) = .6

P(Buy = no) = .4

P(Buy = yes) = .2

P(Buy = no) = .8

P(Buy = yes) = .4

P(Buy = no) = .6

P(Buy = yes) = .4

P(Buy = no) = .6

P(Buy = yes) = .7

P(Buy = no) = .3

yes no

yes

yes

no

no

low, high medium

male female

Figure 11.22 A class probability tree.

tree.” Trees are grown using a greedy one-ply lookahead search strategy and a scoring
criterion to evaluate how good the tree appears based on the data. The classical text in this
area is [Breiman et al., 1984]. Buntine [1993] presents a tree learning algorithm that uses a
Bayesian scoring criterion. This algorithm is used in the IND Tree Package [Buntine, 2002],
which comes with source code and a manual.

11.7.2 Application to Targeted Advertising

Suppose we have some population of potential customers such as all individuals living in a
certain geographical area or all individuals who are registered users of Microsoft Windows.
In targeted advertising we want to mail (or present in some way) an advertisement to a
given subpopulation of this population only if we can expect to increase our profit by so
doing. For example, if we learn we can expect to increase our profit by mailing to all males
over the age of 30 in some population, we should do so. On the other hand, if we cannot
expect to increase our profit by mailing to females under 30, we should not do so. First, we
obtain an equality that tells us whether we can expect to increase our profit by mailing an
advertisement to members of some subpopulation. Then we show how to use this inequality
along with class probability trees to identify potentially profitable subpopulations. Finally,
we show some experimental results.

11.7.2.1 Calculating Expected Lift in Profit

We can distinguish the following four types of potential customers:

Customer Type Does Not Receive Ad Receives Ad
Never-Buy Won’t buy Won’t buy
Persuadable Won’t buy Will buy
Anti-Persuadable Will buy Won’t buy
Always-Buy Will buy Will buy

A never-buy customer will not buy no matter what; a persuadable customer will buy
only if an advertisement is received; an anti-persuadable customer will buy only if an ad-
vertisement is not received (such a customer is perhaps aggravated by the advertisement,

i
i

i
i

i
i

i
i

11.7 Class Probability Trees 323

causing the customer to reverse the decision to buy); and an always-buy customer will buy
regardless of whether an advertisement is received. An advertisement is wasted on never-buy
and always-buy customers, while it has a negative effect on an anti-persuadable customer.
So the ideal mailing would send the advertisement only to the persuadable customers. How-
ever, in general, it is not possible to identify exactly this subset of customers. So we make
an effort to come as close as possible to an ideal mailing.

In some subpopulation let NNever, NPers, NAnti, and NAlways be the number of people
with behaviors never-buy, persuadable, anti-persuadable, and always-buy, and let N be
the total number of people in the subpopulation. Furthermore, let c denote the cost of
mailing (or in some way delivering) the advertisement to a given person, let ru denote the
profit obtained from a sale to an unsolicited customer, and let rs denote the profit from a
sale to a solicited customer. The reason rs may be different from ru is that we may offer
some discount in our advertisement. Now suppose we pick a person at random from the
subpopulation and mail that person the advertisement. We have

P (Buy = yes|Mailed = yes) =
NPers +NAlways

N
, (11.22)

where we are also conditioning on the fact that the person is in the given subpopulation
without explicitly denoting this.

So the expected amount of profit received from each person who is mailed the advertise-
ment is (

NPers +NAlways
N

)
× (rs − c) +

(
1− NPers +NAlways

N

)
× (−c)

=
NPers +NAlways

N
× rs − c.

Similarly,

P (Buy = yes|Mailed = no) =
NAnti +NAlways

N
, (11.23)

and the expected amount of profit received from each person who is not mailed the adver-
tisement is

NAnti +NAlways
N

× ru.

We should mail the advertisement to members of this subpopulation only when the ex-
pected profit received from a person who is mailed the advertisement exceeds the expected
profit received from a person who is not mailed the advertisement. So we should mail the
advertisement to members of the subpopulation only if

NPers +NAlways
N

× rs − c > ru ×
NAnti +NAlways

N
,

or equivalently,

NPers +NAlways
N

× rs −
NAnti +NAlways

N
× ru − c > 0.

We call the left side of this last inequality the expected lift in profit (ELP) that we obtain
by mailing a person the advertisement. Owing to Equality 11.22, we can obtain an estimate
of (NPers +NAlways) /N by mailing many people in the subpopulation the advertisement
and seeing what fraction buy. Similarly, owing to Equality 11.23, we can obtain an estimate
of (NAnti +NAlways) /N by not mailing the advertisement to a set of people and see what
fraction of these people buy.

i
i

i
i

i
i

i
i

324 Chapter 11 Learning Probabilistic Model Structure

We developed the theory using NNever, NPers, NAnti, and NAlways to show the behavior
in the subpopulation that results in the probabilities. The relevant formula in deciding
whether or not to mail to a person in a subpopulation is simply

ELP =

P (Buy = yes|Mailed = yes)rs − P (Buy = yes|Mailed = no)ru − c, (11.24)

where the conditional probabilities are obtained from data or from data along with prior
belief. We mail to everyone in the subpopulation if ELP > 0, and we mail to no one in the
subpopulation if ELP ≤ 0.

11.7.2.2 Identifying Subpopulations with Positive ELPs

Next, we show how to use class probability trees to identify subpopulations that have positive
ELP s.

First, we take a large sample of individuals from the entire population and obtain data
on the target variable Buy, the indicator variable Mailed, and n other indicator variables
X1, X2, . . . , Xn for members of this sample. The n other indicator variables are attributes
such as income, sex, salary, etc. Next, from these data we grow a class probability tree using
a tree growing algorithm as discussed at the end of Section 11.7. For example, suppose n = 2,
X1 = Sex, and X2 = Income. We might learn the class probability tree in Figure 11.22.

Once we learn the tree, we can calculate the ELP for every subpopulation. The next
examples illustrate this.

Example 11.31 Suppose

c = .5

rs = 8

ru = 10,

and we are investigating the subpopulation consisting of individuals with medium income
who are male using the tree in Figure 11.22. We follow the right branch from the root of the
tree and then the left branch from the Sex node to arrive at the Mailed node corresponding
to this subpopulation. We then find for this subpopulation that

ELP = P (Buy = yes|Mailed = yes)rs − P (Buy = yes|Mailed = no)ru − c
= .4× 8− .2× 10− .5 = .7.

Because the ELP is positive, we mail to this subpopulation. �

Example 11.32 Suppose the same values of c, rs, and ru as in the previous example, and
we are investigating the subpopulation consisting of individuals with low income who are
female. We follow the left branch from the root to arrive at the Mailed node corresponding
to this subpopulation. We then find for this subpopulation that

ELP = P (Buy = yes|Mailed = yes)rs − P (Buy = yes|Mailed = no)ru − c
= .6× 8− .5× 10− .5 = −.7.

Because the ELP is negative, we do not mail to this subpopulation. Notice that for mem-
bers of this subpopulation there is an increased probability of buying if we mail them the
advertisement (.6 versus .5). However, owing to the cost and profits involved, the ELP is
negative. �

i
i

i
i

i
i

i
i

11.8 Discussion and Further Reading 325

In general, the goal of a tree growing algorithm is to identify a tree that best represents
the conditional probability of interest. That is, the scoring criterion evaluates the predictive
accuracy of the tree. So a classical tree growing algorithm would attempt to maximize the
accuracy of our estimate of P (Buy|Mailed,X1, X2, . . . , Xn) for all values of the variables.
However, in this application we want to maximize expected profit, which is determined by
the ELP . Notice in Equality 11.24 that the ELP will be 0 if P (Buy = yes|Mailed =
yes) = P (Buy = yes|Mailed = no). So if in some path from the root to a leaf there is no
split on Mailed, the value of the ELP at the leaf will be 0. It seems a useful heuristic would
be to modify the tree growing algorithm to force a split on Mailed on every path from the
root to a leaf. In this way for every subpopulation we will determine that either the ELP
is positive (and therefore we should definitely mail), or the ELP is negative (and therefore
we should definitely not mail). One way to implement this heuristic would be to modify the
algorithm so that the last split is always on the Mailed node. Chickering and Heckerman
[2000] developed a tree growing algorithm with this modification.

Chickering and Heckerman [2000] performed an experiment applying the method just
described. The experiment concerned deciding which subpopulations of Windows 95 reg-
istrants to mail an advertisement soliciting for an MSN subscription. Regardless of the
subscription rate, they found we can expect to benefit by doing targeted advertising as de-
scribed above rather than simply mailing to everyone. The reason is that the method seems
to identify persuadable individuals who would buy only if they are sent an advertisement
and anti-persuadable individuals who are turned off by the advertisement.

11.8 Discussion and Further Reading

In Section 9.8 we showed applications of Bayesian networks. Next we present applications
specifically concerned with learning Bayesian networks from data.

11.8.1 Biology

1. Friedman et al. [2000] developed a technique for learning causal relationships among
genes by analyzing gene expression data. This technique is a result of the “Project for
Using Bayesian Networks to Analyze Gene Expression.”

2. Friedman et al. [2002] formulated a method for phylogenetic tree reconstruction. The
method is used in SEMPHY, which is a tool for maximum likelihood phylogenetic
reconstruction. See http://www.cs.huji.ac.il/labs/compbio/semphy/.

3. Friedman and Koller [2003] created an approximate model averaging technique using
MCMC for analyzing gene expression data.

4. Segal et al. [2005] constructed a module network approach to analyzing gene expression
data.

5. Fishelson and Geiger [2002, 2004] developed a Bayesian network model for genetic
linkage analysis and an inference algorithm for that model.

6. Jiang [Jiang et al., 2010], [Jiang et al., 2011a], [Jiang et al., 2011b] modeled the re-
lationships among a phenotype and genes using a Bayesian network, and applied
Bayesian network scoring criteria to learning the genetic basis of diseases from GWAS
datasets.

7. The text Probabilistic Methods for Bioinformatics [Neapolitan, 2009] discusses many
of the applications to biology just mentioned.

http://www.cs.huji.ac.il/labs/compbio/semphy/

i
i

i
i

i
i

i
i

326 Chapter 11 Learning Probabilistic Model Structure

11.8.2 Business and Finance

1. Breese et al. [1998] learned Bayesian network models for collaborative filtering from
several datasets. Collaborative filtering concerns learning an individual’s interests
based on the interests of similar individuals.

2. Sun and Shenoy [2006] learned a bankruptcy prediction Bayesian network from data.

11.8.3 Causal Learning

Applications to causal learning are discussed in [Neapolitan, 2004], [Spirtes et al., 1993; 2000],
and [Glymour and Cooper, 1999].

11.8.4 Data Mining

Margaritis et al. [2001] developed NetCube, a system for computing counts of records with
desired characteristics from a database, which is a common task in the areas of decision
support systems and data mining. The method can quickly compute counts from a database
with billions of records.

11.8.5 Medicine

Herskovits and Dagher [1997] learned from data a system for assessing cervical spinal-cord
trauma.

11.8.6 Weather Forecasting

Kennett et al. [2001] learned from data a system which predicts sea breezes.

EXERCISES

Section 11.2

Exercise 11.1 Suppose we have the two models in Figure 11.1 and the following data:

Case J F
1 j1 f1

2 j1 f1

3 j1 f1

4 j1 f1

5 j1 f1

6 j1 f2

7 j2 f2

8 j2 f2

9 j2 f2

10 j2 f1

1. Score each DAG model using the Bayesian score and compute their posterior proba-
bilities, assuming that the prior probability of each model is .5.

i
i

i
i

i
i

i
i

Exercises 327

2. Create a dataset containing 20 records by duplicating the data in the table one time,
and score the models using this 20-record dataset. How have the scores changed?

3. Create a dataset containing 200 records by duplicating the data in the table 19 times,
and score the models using this 200-record dataset. How have the scores changed?

Exercise 11.2 Suppose we have a Markov chain with the following transition matrix: 1/5 2/5 2/5
1/7 4/7 2/7
3/8 1/8 1/2

 .

Determine the stationary distribution for the chain.

Exercise 11.3 Suppose we have the distribution rT =
(

1/9 2/3 2/9
)
. Using the

Metropolis-Hastings method, find a transition matrix for a Markov chain that has this as
its stationary distribution. Do it both with a matrix Q that is symmetric and with one that
is not.

Exercise 11.4 In Example 11.14, we computed P (j1|f1,D) using model averaging. Use
the same technique to compute P (j1|f2,D).

Exercise 11.5 Assume that we have the models and dataset discussed in Exercise 11.1.
Using model averaging, compute the following:

1. P (j1|f1,D) when D consists of our original 10 records.

2. P (j1|f1,D) when D consists of 20 records.

3. P (j1|f1,D) when D consists of 200 records.

Exercise 11.6 Assume that there are three variables X1, X2, and X3, and that all DAG
patterns have the same posterior probability (1/11) given the data. Compute the probability
of the following features being present given the data (assuming faithfulness):

1. Ip(X1, X2)

2. qIp(X1, X2)

3. Ip(X1, X2|X3) and qIp(X1, X2)

4. qIp(X1, X2|X3) and Ip(X1, X2).

Section 11.3

Exercise 11.7 Suppose V = {X,Y, Z, U,W} and the set of conditional independencies in
P is

{IP (X,Y) IP ({W,U}, {X,Y }|Z) IP (U, {X,Y, Z}|W)}.

Find all DAGs faithful to P .

i
i

i
i

i
i

i
i

328 Chapter 11 Learning Probabilistic Model Structure

Exercise 11.8 Suppose V = {X,Y, Z, U,W} and the set of conditional independencies in
P is

{IP (X,Y) IP (X,Z) IP (Y,Z) IP (U, {X,Y, Z}|W)}.

Find all DAGs faithful to P .

Exercise 11.9 Suppose V = {X,Y, Z, U,W} and the set of conditional independencies in
P is

{IP (X,Y |U) IP (U, {Z,W}|{X,Y }) IP ({X,Y, U},W |Z)}.

Find all DAGs faithful to P .

Exercise 11.10 Suppose V = {X,Y, Z,W, T, V,R} and the set of conditional independen-
cies in P is

{IP (X,Y |Z) IP (T, {X,Y, Z, V }|W)

IP (V, {X,Z,W, T}|Y) IP (R, {X,Y, Z,W}|{T, V })}.

Find all DAGs faithful to P .

Exercise 11.11 Suppose V = {X,Y, Z,W,U} and the set of conditional independencies in
P is

{IP (X, {Y,W}|U) IP (Y, {X,Z}|U)}.

1. Is there any DAG faithful to P?

2. Find DAGs in which P is embedded faithfully.

i
i

i
i

i
i

i
i

Exercises 329

Section 11.6

Exercise 11.12 If we make the causal faithfulness assumption, determine what causal in-
fluences we can learn in each of the following cases:

1. Given the conditional independencies in Exercise 11.7

2. Given the conditional independencies in Exercise 11.8

3. Given the conditional independencies in Exercise 11.9

4. Given the conditional independencies in Exercise 11.10

Exercise 11.13 If we make only the causal embedded faithfulness assumption, determine
what causal influences we can learn in each of the following cases:

1. Given the conditional independencies in Exercise 11.7

2. Given the conditional independencies in Exercise 11.8

3. Given the conditional independencies in Exercise 11.9

4. Given the conditional independencies in Exercise 11.10

5. Given the conditional independencies in Exercise 11.11

Exercise 11.14 Using Tetrad (or some other Bayesian network learning algorithm), learn
a DAG from the data in Table 11.1. Next learn the parameters for the DAG. Can you
suspect any causal influences from the learned DAG?

Exercise 11.15 Create a data file containing 120 records from the data in Table 11.1 by
duplicating the data nine times. Using Tetrad (or some other Bayesian network learning
algorithm), learn a DAG from this larger dataset. Next learn the parameters for the DAG.
Compare these results to those obtained in Exercise 11.14.

Exercise 11.16 Suppose we have the following variables:

Variable What the Variable Represents
H Parents’ smoking habits
I Income
S Smoking
L Lung cancer

and the following data:

i
i

i
i

i
i

i
i

330 Chapter 11 Learning Probabilistic Model Structure

Case H I S L
1 Yes 30,000 Yes Yes
2 Yes 30,000 Yes Yes
3 Yes 30,000 Yes No
4 Yes 50,000 Yes Yes
5 Yes 50,000 Yes Yes
6 Yes 50,000 Yes No
7 Yes 50,000 No No
8 No 30,000 Yes Yes
9 No 30,000 Yes Yes
10 No 30,000 Yes No
11 No 30,000 No No
12 No 30,000 No No
13 No 50,000 Yes Yes
14 No 50,000 Yes Yes
15 No 50,000 Yes No
16 No 50,000 No No
17 No 50,000 No No
18 No 50,000 No No

Using Tetrad (or some other Bayesian network learning algorithm), learn a DAG from these
data. Next learn the parameters for the DAG. Can you suspect any causal influences from
the learned DAG?

Exercise 11.17 Create a data file containing 190 records from the data in Exercise 11.16
by duplicating the data nine times. Using Tetrad (or some other Bayesian network learning
algorithm), learn a DAG from this larger dataset. Next learn the parameters for the DAG.
Compare these results to those obtained in Exercise 11.16.

Section 11.7

Exercise 11.18 Retrieve the following probability from the tree in Figure 11.22:

P (Buy = yes|Income = medium, Sex = male,Mailed = no).

Exercise 11.19 Retrieve the following probability from the tree in Figure 11.22:

P (Buy = yes|Income = low,Mailed = yes).

Exercise 11.20 Suppose

c = .6

rs = 7

ru = 9.

1. Compute the ELP for the subpopulation consisting of individuals with medium income
who are male using the tree in Figure 11.22. Should we mail to this subpopulation?

2. Compute the ELP for the subpopulation consisting of individuals with medium income
who are female using the tree in Figure 11.22. Should we mail to this subpopulation?

3. Compute the ELP for the subpopulation consisting of individuals with low income
using the tree in Figure 11.22. Should we mail to this subpopulation?

i i

Chapter 12

Unsupervised Learning and
Reinforcement Learning

In this chapter, we discuss two specialized types of learning: namely, unsupervised learning
and reinforcement learning.

12.1 Unsupervised Learning

Unsupervised learning concerns trying to find hidden structure in data. Clustering,
which involves the discovery of categories from data, is a basic form of unsupervised learning,
and one in which we have achieved a good deal of success. We discuss clustering first.

12.1.1 Clustering

The cluster learning problem is as follows: Given a collection of unclassified entities and
features of those entities, organize those entities into categories that in some sense maximize
the similarity of the features of the entities in the same category. Like supervised learning,
in clustering we have a training set consisting of data items whose attributes are values of
predictors (features of the entities), but there is no attribute for a target variable representing
the category. We not only do not know the category of each entity, we do not even know
the number of categories. As an example, suppose that we arrive at an unexplored island,
and we observe many different plants that we have previously never seen. We might decide
that we would like to group them into categories based on their observed characteristics. As

i
i

i
i

i
i

i
i

332 Chapter 12 Unsupervised Learning and Reinforcement Learning

D
2

H

D
1

D
3 C

2
C
1

C
3

C
5

C
4

C
6

Figure 12.1 An example of a DAG model used in Autoclass.

another example, we may observe the spectra of hundreds of thousands of stars, and want
to group them according to their characteristics.

Cheeseman and Stutz [1996] developed AutoClass to address the cluster learning prob-
lem. Next we discuss AutoClass.

Autoclass models this problem using the DAG model in Figure 12.1. The root in
that DAG is a hidden variable. When learning a DAG model, a hidden variable in
the DAG is a hypothesized variable for which we have no observable data. In Figure
12.1, the hidden variable is discrete, and its possible values correspond to the underly-
ing categories of entities. The model assumes that the features represented by discrete
variables (in the figure D1, D2, and D3), and sets of features represented by continuous
variables (in the figure {C1, C2, C3, C4} and {C5, C6}) are mutually independent given
H. Given a dataset containing values of the features, Autoclass searches over variants
of this model, including the number of possible values of the hidden variable, and it se-
lects a variant so as to approximately maximize the posterior probability of the variant.
The Expectation-Maximization (EM) Algorithm is used to estimate the posterior proba-
bility of each model. See [Neapolitan, 2004] for a discussion of the EM Algorithm and
[Cheeseman and Stutz, 1996] for the details of AutoClass. The AutoClass software is avail-
able as freeware at http://directory.fsf.org/project/autoclass/.

Example 12.1 Cheeseman and Stutz [1996] applied AutoClass to a 1024 × 1024 array of
pixels, where each pixel recorded seven spectral intensities from a 30-m square ground patch.
Their test image was a 30-km square region in Kansas, which means there were a total of
1, 000, 000 pixels. The image was taken by the LandSat/TM satellite in August, 1989. The
goal of the investigation was to find categories in the 1, 000, 000 pixels.

Instead of treating each spectral value independently within a category, they allowed the
values to be correlated with each other with separate correlations for each category. The
model did not take into account the spatial correlation of neighboring pixels.

The best classification had 93 categories, and these categories were classified to produce
a meta-classification. Each pixel was assigned to its most probable category, and then
two-dimensional distributions of the resultant categories were plotted. Many categories
exhibited immediate interpretations such as roads, rivers, valley bottoms, valley edges, and
fields of particular crops. Other categories with many fewer members contained pixels with
a mixture of basic types. For example, a pixel partially falling on a highway and partially
falling on surrounding grass resulted in a mixed pixel. When there were enough of these
mixed pixels with roughly the same mixing proportion, they formed a category of their

http://directory.fsf.org/project/autoclass/

i
i

i
i

i
i

i
i

12.2 Reinforcement Learning 333

own. In the mixed pixel case the categories are not very meaningful, but the majority of
the categories were composed of pure pixels of a single type.

12.1.2 Automated Discovery

Another quite different and not as successful area of unsupervised learning involves auto-
matic discovery. Researchers in automatic discovery endeavors to develop algorithms that
discover properties or laws such as those in mathematics and science from data.

In 1977, Doug Lenat [Davis and Lenat, 1982] developed Automated Mathematician
(AM). AM was empowered with a large body of heuristics and by modifying LISP programs
was able to discover the natural numbers, arithmetic, and several elementary concepts in
number theory. However, it failed to discover anything advanced. Lenat [1983] devel-
oped EURISKO to address some of the problems in AM. EURISKO tries to learn new
heuristics. Lenat and Brown [1984] discuss why AM and EURISKO appeared to work.
Other efforts at automatic discovery of mathematical concepts appear in [Sims, 1987] and
[Cotton et al., 2000].

As another example of automated discovery, Langley et al. [1987] describe BACON,
which attempts to learn scientific laws from data. For example, BACON discovered Kepler’s
laws of planetary motion from the distances between planets and information about the
planets’ orbits around the sun.

12.2 Reinforcement Learning

In reinforcement learning the algorithm interacts with an environment by producing a
sequence of actions a1, a2, ..., at over time. These actions affect the environment, which
results in a reward or punishment rt in each time slot t. The goal of the algorithm is to
learn to act in a way that is likely to maximize some utility measure in the future. The
reinforcement need not literally be a reward or punishment; rather, it can be any feedback
that is useful for determining future actions. Genetic algorithms, which will be introduced
in Chapter 13, are very similar to reinforcement learning algorithms. However, in the case of
reinforcement learning, the algorithm can recall and use what it has learned in all previous
time slots, whereas in the genetic algorithms the decisions concerning each generation are
based only on information about individuals in that generation. Reinforcement learning is
related to decision analysis, which we discussed in Chapter 9. Indeed, the second method
we present for reinforcement learning is based on influence diagrams. First, we present a
method that is based on slot machines, known as one-armed bandits.

12.2.1 Multi-Armed Bandit Algorithms

As discussed in Chapter 9, we often make decisions in the hope of maximizing some ex-
pected reward. Sometimes the results of these decisions not only include reward, but also
knowledge on which we can base future decisions. For example, Hardwick and Stout [1991]
describe the following situation. When performing clinical trials researchers allocate pa-
tients to treatments so that the trial goals may be achieved and the costs are kept at a
minimum. Traditionally, subjects are allocated up front to groups in equal or predeter-
mined proportions. However, these researchers note that this practice lacks the flexibility
to incorporate other desirable design goals. They suggest that adaptive design, in which
allocation strategies may depend on data observed during the trial, would be more flexibil-
ity. As another example, Awerbuch and Kleinberg [2005] note that minimal delay routing
is a fundamental task in networks. Uncertainty about the network delays may make the

i
i

i
i

i
i

i
i

334 Chapter 12 Unsupervised Learning and Reinforcement Learning

current routing choices sub-optimal; so an algorithm can analyze the traffic patterns and
keep adapting its choice of routing paths to improve performance.

The multi-armed bandit problem [Robbins, 1952] is a generalization of these two prob-
lems. The one-armed bandit is a name give to a slot machine, which is a gambling device
with a lever. The gambler inserts a certain fee in the slot machine, pulls a lever, and then
receives a certain reward according to some distribution. In the multi-armed bandit
problem, there are k levers. Initially, the gambler knows nothing about the levers, but
through repeated trials can learn which ones tend to be more rewarding.

Concretely, the k-armed bandit problem is as follows. We have a set of k real probability
distributions {p1, p2, ...pk}. In sequence, we choose an integer i such that 1 ≤ i ≤ k. A
value (reward) is chosen at random according to distribution pi. This process is repeated
N times. The objective is to maximize the sum of the values (total reward).

As noted above, reinforcement learning algorithms are very similar to genetic algorithms.
Like genetic algorithms, strategies for solving the k-armed bandit problem include combining
exploitation with exploration (See Section 13.2.1). In the current context, by exploitation
we mean to exploit knowledge already obtained about levers that look good, while by ex-
ploration we mean looking for new levers without regard for how good they currently
appear.

Next we present several strategies for using exploitation/exploration to solve the k-armed
bandit problem.

1. ε-Greedy Strategy: First, the mean value of the rewards obtained for all levers is
computed based on the previous rounds. A lever chosen at random according to the
uniform distribution is pulled with probability ε; otherwise the lever with the highest
mean value is pulled. The choice of ε is left to the user. The process is started by
choosing a lever at random according to the uniform distribution.

2. ε-First Strategy: For the first εN rounds, the lever pulled is chosen at random accord-
ing to the uniform distribution, where N is the total number of rounds. The mean
values of the rewards for all levers based on these rounds is then computed. The lever
with highest mean value is pulled during the remaining (1− ε)N rounds.

3. ε-Decreasing Strategy: This strategy is like the ε-Greedy Strategy except the value of
ε decreases for each round. That is, εt = min[1, ε/t] for t = 2, 3, ...N .

4. ε-LeastTaken Strategy: The least-taken lever is pulled with a probability of 4ε/(4 +
m2), where m is the number of times the least-taken lever has already been pulled.
Otherwise, the lever with the highest mean value is pulled.

Vermoral and Mohri [2005] discuss more complex strategies. Furthermore, they develop
a new strategy called POKER.

The regret ρ for a given strategy after all N rounds is defined to be the difference
associated with an optimal strategy and the sum of the rewards obtained using the strategy.
That is,

ρ = Nµ∗ −
N∑
i=1

rt,

where µ∗ is the expected value of the probability distribution pi that has the largest expected
value, and rt is the reward actually received in round t. A strategy is said to be a zero-
regret strategy if its average regret per round tends to 0 with probability 1 asN approaches
infinity. Vermoral and Mohri [2005] show that POKER is a zero-regret strategy.

i
i

i
i

i
i

i
i

12.2 Reinforcement Learning 335

Table 12.1 Comparisons of Performance of Several Bandit Strategies. For the R-
experiment, bigger numbers are better (rewards), and for the N-experiments, smaller num-
bers are better (punishments).

Strategy R-100 R-1000 R-10,000 N-130 BN-1300
POKER .787 .885 .942 203 132

ε-Greedy, .05 .712 .855 .936 733 431
ε-Greedy, .10 .740 .858 .916 731 453
ε-Greedy, .15 .746 .842 .891 715 474

ε-First, .05 .732 .906 .951 735 414
ε-First, .10 .802 .893 .926 733 421
ε-First, .15 .809 .869 .901 725 411

ε-Decreasing, 1 .755 .805 .851 738 411
ε-Decreasing, 5 .785 .895 .934 715 413
ε-Decreasing, 10 .736 .901 .949 733 417

ε-LeastTaken, .05 .750 .782 .932 747 420
ε-LeastTaken, .10 .750 .791 .912 738 432
ε-LeastTaken, .15 .757 .784 .892 734 441

Vermoral and Mohri [2005] compared the performance of POKER, the four strategies
presented here, and other strategies discussed in their paper using the following two exper-
iments.

In the first experiment, they simulated 1000 levers, where the reward associated with each
lever was normally distributed. The means and standard deviations were drawn uniformly
from the interval (0, 1). They then generated a dataset containing 10,000 rounds, and they
evaluated the strategies using 100 rounds, 1000 rounds, and all 10,000 of the rounds. They
computed the average reward per round for each strategy. This process was repeated 10,000
times and the averages over all 10,000 trials were computed.

The second experiment concerns the real-world problem known as the Content Dis-
tribution Network Problem (CDN) [Krishnamurthy et al., 2001]. The problem is to
retrieve data through a network with several redundant sources available. For each re-
trieval, one source is selected, and the algorithm then waits until the data are retrieved.
The objective is to minimize the sum of the delays over all retrievals. To simulate this
problem, they used the home pages of over 700 universities as sources. The universities
represent the levers. The home page for each university was retrieved every 10 minutes for
10 days, resulting in 1300 rounds. For each retrieval, the retrieval latency in milliseconds
was recorded. This latency was the punishment. The strategies were evaluated using 130
rounds and all 1300 rounds. They computed the average latency (punishment) per round
for each strategy.

For both experiments, the process was repeated 10,000 times and the averages over
all 10,000 trials were computed. Table 12.1 shows the results for POKER and the four
strategies presented here. For the R-experiments, bigger numbers are better because they
represent rewards, whereas for the N-experiments smaller numbers are better because they
represent punishments. Vermoral and Mohri [2005] include results for some other strategies.
Interesting is that all the strategies perform similarly for the R-experiments, but POKER
does much better for the N-experiments (which are real-world). This result remains true

i
i

i
i

i
i

i
i

336 Chapter 12 Unsupervised Learning and Reinforcement Learning

when we include the additional results in [Vermorel and Mohri, 2005].

12.2.2 Dynamic NetworksF

Dynamic Bayesian networks model relationships among random variables that change over
time. Dynamic Influence diagrams model sequential decision making based on observing
variables over time. So the latter can be used for reinforcement learning. Before discussing
dynamic influence diagrams and their application to reinforcement learning, we present
Dynamic Bayesian networks.

12.2.2.1 Dynamic Bayesian Networks

After developing the theory, we present an example.

Formulation of the Theory Bayesian networks do not model temporal relationships
among variables. That is, a Bayesian network only represents the probabilistic relationships
among a set of variables at some point in time. It does not represent how the value of some
variable may be related to its value and the values of other variables at previous points
in time. In many problems, however, the ability to model temporal relationships is very
important. For example, in medicine it is often important to represent and reason about
time in tasks such as diagnosis, prognosis, and treatment options. Capturing the dynamic
(temporal) aspects of the problem is also important in artificial intelligence, economics, and
biology. Next, we introduce dynamic Bayesian networks, which do model the temporal
aspects of a problem.

First, however, we need to define a random vector. Given random variables X1, . . . , Xn,
the column vector

X =

 X1

...
Xn

is called a random vector. A random matrix is defined in the same manner. We use
X to denote both a random vector and the set of random variables that comprises X.
Similarly, we use x to denote both a vector value of X and the set of values that comprises
x. The meaning is clear from the context. Given this convention and a random vector X
with dimension n, P (x) denotes the joint probability distribution P (x1, . . . , xn). Random
vectors are called independent if the sets of variables that comprise them are independent.
A similar definition holds for conditional independence.

Now we can discuss dynamic Bayesian networks. We assume that changes occur between
discrete time points, which are indexed by the non-negative integers, and we have some finite
number T of points in time. Let {X1, . . . , Xn} be the set of features whose values change
over time, let Xi [t] be a random variable representing the value of Xi at time t for 0 ≤ t ≤ T ,
and let the random vector X[t] be given by

X[t] =

 X1 [t]
...

Xn [t]

 .

For all t, each Xi [t] has the same space that depends on i, and we call it the space of Xi. A
dynamic Bayesian network is a Bayesian network containing the variables that comprise
the T random vectors X[t] and is determined by the following specifications:

i
i

i
i

i
i

i
i

12.2 Reinforcement Learning 337

X
1
[0]

X
2
[0]

X
3
[0]

(a)

X
1
[t]

X
2
[t]

X
3
[t]

X
1
[t+1]

X
2
[t+1]

X
3
[t+1]

X
1
[1]

X
2
[1]

X
3
[1]

(b)

X
1
[0]

X
2
[0]

X
3
[0]

X
1
[2]

X
2
[2]

X
3
[2]

Figure 12.2 Prior and transition Bayesian networks are in (a). The resultant dynamic
Bayesian network for T = 2 is in (b). Note that the probability distributions are not shown.

1. An initial Bayesian network consisting of (a) an initial DAG G0 containing the vari-
ables in X[0] and (b) an initial probability distribution P0 of these variables.

2. A transition Bayesian network, which is a template consisting of (a) a transition
DAG G→ containing the variables in X[t] ∪X[t + 1] and (b) a transition probability
distribution P→, that assigns a conditional probability to every value of X[t+ 1] given
every value X[t]. That is, for every value x[t+ 1] of X[t+ 1] and value x[t] of X[t], we
specify

P→(X[t+ 1] = x[t+ 1]|X[t] = x[t]).

Because for all t eachXi has the same space, the vectors x[t+1] and x[t] each represents
values from the same set of spaces. The index in each indicates the random variable
that has the value. We showed the random variables above; henceforth we do not
show them.

3. The dynamic Bayesian network consisting of (a) the DAG composed of the DAG
G0 and for 0 ≤ t ≤ T − 1 the DAG G→ evaluated at t and (b) the following joint
probability distribution:

P (x[0], . . .x[T]) = P0 (x[0])
T−1∏
t=0

P→(x[t+ 1]|x[t]). (12.1)

Figure 12.2 shows an example. The transition probability distribution entailed by the
network in Figure 12.2 is

P→(x[t+ 1]|x[t]) =
n∏
i=0

P→(xi[t+ 1]|pai[t+ 1]),

where pai[t+ 1] denotes the values of the parents of Xi[t+ 1]. Note that there are parents
in both X[t] and X[t+ 1].

i
i

i
i

i
i

i
i

338 Chapter 12 Unsupervised Learning and Reinforcement Learning

E
1
[t]

X
1
[t]

X
2
[t]

X
3
[t]

E
2
[t]

E
1
[t+1]

X
1
[t+1]

X
2
[t+1]

X
3
[t+1]

E
2
[t+1]

E
1
[0]

X
1
[0]

X
2
[0]

X
3
[0]

E
2
[0]

E
1
[1]

X
1
[1]

X
2
[1]

X
3
[1]

E
2
[1]

E
1
[2]

X
1
[2]

X
2
[2]

X
3
[2]

E
2
[2]

E
1
[0]

X
1
[0]

X
2
[0]

X
3
[0]

E
2
[0]

(a) (b)

Figure 12.3 Prior and transition Bayesian networks, in the case where the networks in
different time slots are connected only through non-evidence variables, are in (a). The
resultant dynamic Bayesian network for T = 2 is in (b).

Owing to Equality 12.1, for all t and for all x,

P (x[t+ 1]|x[0], . . .x[t]) = P (x[t+ 1]|x[t]).

That is, all the information needed to predict a world state at time t is contained in the
description of the world at time t− 1. No information about earlier times is needed. Owing
to this feature, we say the process has the Markov property. Furthermore, the process is
stationary. That is, P (x[t+ 1]|x[t]) is the same for all t. In general, it is not necessary for
a dynamic Bayesian network to have either of these properties. However, they reduce the
complexity of representing and evaluating the networks, and they are reasonable assumptions
in many applications. The process need not stop at a particular time T . However, in
practice, we reason only about some finite amount of time. Furthermore, we need a terminal
time value to properly specify a Bayesian network.

Probabilistic inference in a dynamic Bayesian network can be done using the standard
algorithms discussed in Chapter 3. However, because the size of a dynamic Bayesian network
can become enormous when the process continues for a long time, the algorithms can be
quite inefficient. There is a special subclass of dynamic Bayesian networks in which this
computation can be done more efficiently. This subclass includes dynamic Bayesian networks
in which the networks in different time steps are connected only through non-evidence
variables. An example of such a network is shown in Figure 12.3. The variables labeled
with an E are the evidence variables and are instantiated in each time step. We lightly
shade nodes representing them.

An application that uses a dynamic Bayesian network like the one in Figure 12.3 is shown
in the next subsection. Presently, we illustrate how updating can be done effectively in such
networks.

i
i

i
i

i
i

i
i

12.2 Reinforcement Learning 339

E
1
[t]

X
1
[t]

E
1
[t+1]

X
1
[t+1]

E
1
[0]

X
1
[0]

E
1
[1]

X
1
[1]

E
1
[2]

X
1
[2]

E
1
[0]

X
1
[0]

(a) (b)

Figure 12.4 Prior and transition Bayesian networks for a hidden Markov model are in (a).
The resultant dynamic Bayesian network for T = 2 is in (b).

Let e[t] be the set of values of the evidence variables at time step t, and let f[t] be the
set of values of the evidence variables up to and including time step t. Suppose for each
value x[t] of X[t] we know

P (x[t]|f[t]).

We want to now compute P (x[t+ 1]|f[t+ 1]). First, we have

P (x[t+ 1]|f[t]) =
∑
x[t]

P (x[t+ 1]|x[t], f[t])P (x[t]|f[t]).

=
∑
x[t]

P (x[t+ 1]|x[t])P (x[t]|f[t]). (12.2)

Using Bayes’ theorem, we then have

P (x[t+ 1]|f[t+ 1]) = P (x[t+ 1]|f[t], e[t+ 1])

= αP (e[t+ 1]|x[t+ 1], f[t])P (x[t+ 1]|f[t])
= αP (e[t+ 1]|x[t+ 1])P (x[t+ 1]|f[t]), (12.3)

where α is a normalizing constant. The value of P (e[t + 1]|x[t + 1]) can be computed
using an inference algorithm for Bayesian networks. We start the process by computing
P (x[0]|f[0]) = P (x[0]|e[0]). Then at each time step t + 1 we compute P (x[t + 1]|f[t + 1])
using Equalities 12.2 and 12.3 in sequence. Note that to update the probability for the
current time step we only need values computed at the previous time step and the evidence
at the current time step. We can throw out all previous time steps, which means we need
only keep enough network structure to represent two time steps.

A simple way to view the process is shown next. We define

P ′(x[t+ 1]) ≡ P (x[t+ 1]|f[t]),

which is the probability distribution of X[t+ 1] given the evidence in the first t time steps.
We determine this distribution at the beginning of time step t+ 1 using Equality 12.2, and
then we discard all previous information. Next we obtain the evidence in the time step t+1
and update P ′ using Equality 12.3.

A hidden Markov model is a dynamic Bayesian network such that in each time step
there is a single unobserved variable and one or more evidence variables, and the only edges
include edges from each unobserved variable to the evidence variables in its time step and
an edge to the unobserved variable in the following time step. Figure 12.4 shows a hidden
Markov model.

i
i

i
i

i
i

i
i

340 Chapter 12 Unsupervised Learning and Reinforcement Learning

Figure 12.5 Tessellation of corrider layout.

An Example: Mobile Target Localization We present an application of dynamic
Bayesian networks to mobile target localization, which was developed by Basye et al. [1992].
The mobile target localization problem concerns tracking a target while maintaining
knowledge of one’s own location. Basye et al. [1992] developed a world in which a target
and a robot reside. The robot is supplied with a map of the world, which is divided into
corridors and junctions. Figure 12.5 shows a portion of one such world tessellated according
to this scheme. Each rectangle in that figure is a different region. The state space for the
location of the target is the set of all the regions shown in the figure, and the state space
for the location of the robot is the set of all these regions augmented with four quadrants
to represent the directions the robot can face. Let LR and LA be random variables whose
values are the locations of the robot and the target, respectively.

Both the target and the robot are mobile, and the robot has sensors it uses to maintain
knowledge of its own location and to track the target’s location. Specifically, the robot
has a sonar ring consisting of eight sonar transducers, configured in pairs pointing forward,
backward, and to each side of the robot. Each sonar gives a reading between 30 and 6000
mm, where 6000 means 6000 or more. Figure 12.6 shows one set of readings obtained from
the sonars upon entering a T-junction. We want the sensors to tell us what kind of region we
are in. So we need a mapping from the raw sensor data to an abstract sensor space consisting
of the following: corridor, T-junction, L-junction, dead-end, open space, and crossing. This
mapping could be deterministic or probabilistic. Basye et al. [1992] discuss methods for
developing it. Sonar data are notoriously noisy and difficult to disambiguate. A sonar that
happens to be pointed at an angle of greater than 70 degrees to a wall will likely not see
the wall. So we will assume the relationship is probabilistic. The robot also has a forward-
pointing camera to identify the presence of its target. The camera can detect the presence
of a blob identified to be the target. If it does not detect a suitable blob, this evidence is
reported. If it does find a suitable blob, the size of the blob is used to estimate its distance
from the robot, which is reported in rather gross units, that is, within 1 meter, between 2 and
3 meters, etc. The detection of a blob at a given distance is only probabilistically dependent
on the actual presence of the target at that distance. Let ER be a random variable whose
value is the sonar reading, which tells the robot something about its own location, and EA
be a random variable whose value is the camera reading, which tells the robot something
about the target’s location relative to the robot. It follows from the previous discussion
that ER is probabilistically dependent on LR and EA is probabilistically dependent on both
LR and LA. At each time step, the robot obtains readings from its sonar ring and camera.
For example, it may obtain the sonar readings in Figure 12.6, and its camera may inform it
that the target is visible at a certain distance.

The actions available to the robot and the target are as follows: travel down the corridor
the length of one region, turn left around the corner, turn around, etc. In the dynamic

i
i

i
i

i
i

i
i

12.2 Reinforcement Learning 341

580 574

99959995

217 221

5999 5999

Figure 12.6 Sonar readings upon entering a T-junction.

E
R
[t]

L
R
[t]

E
A
[t]

L
A
[t]

E
R
[0]

L
R
[0]

E
A
[0]

L
A
[0]

(a) (b)

E
R
[t+1]

L
R
[t+1]

E
A
[t+1]

L
A
[t+1]

E
R
[0]

L
R
[0]

E
A
[0]

L
A
[0]

E
R
[1]

L
R
[1]

E
A
[1]

L
A
[1]

E
R
[2]

L
R
[2]

E
A
[2]

L
A
[2]

Figure 12.7 The prior and transition Bayesian networks for the mobile target mobilization
problem are in (a). The resultant dynamic Bayesian network for T = 2 is in (b).

Bayesian network model, these actions are simply performed in some preprogrammed prob-
abilistic way, which is not related to the sensor data. So the location of the robot at time
t + 1 is a probabilistic function of its location at time t. When we model the problem
with a dynamic influence diagram in Section 12.2.2.2, the robot will decide on its action
based on the sensor data. The target’s movement could be determined by a person or be
preprogrammed probabilistically.

In summary, the random variables in the problem are as follows:

Variable What the Variable Represents
LR Location of the robot
LA Location of the target
ER Sensor reading regarding location of robot
EA Camera reading regarding location of target relative to robot

Figure 12.7 shows a dynamic Bayesian network that models this problem (without show-
ing any actual probability distributions). The prior probabilities in the prior network rep-
resent information initially known about the location of the robot and the target. The

i
i

i
i

i
i

i
i

342 Chapter 12 Unsupervised Learning and Reinforcement Learning

X[1]X[0] X[2]

D[0] D[1]

U[2]

Figure 12.8 The high-level structure of a dynamic influence diagram.

conditional probabilities in the transition Bayesian network can be obtained from data. For
example, P (eA|lR, lA) can be obtained by repeatedly putting the robot and the target in
positions lR and lA, respectively, and seeing how often reading eA is obtained.

Note that although the robot can sometimes view the target, the robot makes no effort
to track the target. That is, the robot moves probabilistically according to some scheme.
Our goal is for the robot to track the target. However, to do this it must decide on where
to move next based on the sensor data and camera reading. As mentioned above, we need
dynamic influence diagrams to produce such a robot. They are discussed next.

12.2.2.2 Dynamic Influence Diagrams

Again, we first develop the theory and then we give an example.

Formulation of the Theory To create a dynamic influence diagram from a dynamic
Bayesian network, we need only add decision nodes and a value node. Figure 12.8 shows
the high-level structure of such a network for T = 2. The chance node at each time step
in that figure represents the entire DAG at that time step, and so the edges represent sets
of edges. There is an edge from the decision node at time t to the chance nodes at time
t + 1 because the decision made at time t can affect the state of the system at time t + 1.
The problem is to determine the decision at each time step that maximizes expected utility
at some point in the future. Figure 12.8 represents the situation where we are determining
the decision at time 0 that maximizes expected utility at time 2. The final utility could, in
general, be based on the earlier chance nodes and even the decision nodes. However, we do
not show such edges to simplify the diagram. Furthermore, the final expected utility is often
a weighted sum of expected utilities independently computed for each time step up to the
point in the future we are considering. Such a utility function is called time-separable.

In general, dynamic influence diagrams can be solved using the algorithm presented in
Section 9.2.2. The next section contains an example.

An Example: Mobile Target Localization Revisited After we present the model,
we show some results concerning a robot constructed according to the model.

i
i

i
i

i
i

i
i

12.2 Reinforcement Learning 343

D [t] D [t+1]

E
R
[t]

L
R
[t]

E
A
[t]

L
A
[0]

E
R
[t+1]

L
R
[t+1]

E
A
[t+1]

L
A
[t+1]

E
R
[t+2]

L
R
[t+2]

E
A
[t+2]

L
A
[t+2]

D [t+2]

E
R
[t+3]

L
R
[t+3]

E
A
[t+3]

L
A
[t+3]

Figure 12.9 The dynamic influence diagram modeling the robot’s decision of which action
to take at time t.

The Model Recall the robot discussed in Section 12.2.2.1. Our goal is for the robot
to track the target by deciding on its move at time t based on its evidence at time t. So now
we allow the robot to make a decision D[t] at time t of which action it will take, where the
value of D[t] is a result of maximizing an expected utility function based on the evidence
in time step t . This evidence is the “reward” that is analyzed in order to try to maximize
future reward. The future reward is to be close to the target.

We assume there is error in the robot’s movement. So the location of the robot at time
t+1 is a probabilistic function of its location at the previous time step and the action taken.
The conditional probability distribution of LR is obtained from data, as discussed at the
end of Section 12.2.2.1. That is, we repeatedly place the robot in a location, perform an
action, and then observe its new location.

The dynamic influence diagram, which represents the decision at time t and in which
the robot is looking three time steps into the future, is shown in Figure 12.9. Note that
there are crosses through the evidence variable at time t to indicate their values are already
known. We need to maximize expected utility using the probability distribution conditional
on these values and the values of all previous evidence variables. Recall that at the end of
Section 12.2.2.1 we called this probability distribution P ′, and we discussed how it can be
obtained. First, we need to define a utility function. Suppose we decide to determine the
decision at time t by looking M time steps into the future. Let

dM = {d[t], d[t+ 1], . . . d[t+M − 1]}

be a set of values of the next M decisions including the current one, and let

fM = {eR[t+ 1], eA[t+ 1], eR[t+ 2], eA[t+ 2], . . . eR[t+M], eA[t+M]}

be a set of values of the evidence variables observed after the decisions are made. For

i
i

i
i

i
i

i
i

344 Chapter 12 Unsupervised Learning and Reinforcement Learning

1 ≤ k ≤M , let dk and fk, respectively, be the first k decisions and evidence pairs in each of
these sets. Define

Uk(fk, dk) = −min
u

∑
v

dist(u, v)P ′(LA[t+ k] = v)|fk, dk), (12.4)

where dist is the Euclidean distance, the sum is over all values v in the space of LA, and
the minimum is over all values u in the space of LA. Recall from the beginning of Section
12.2.2.1 that the robot is supplied with a map of the world. It uses this map to find every
element in the space of LA. The idea is that if we make these decisions and obtain these
observations at time t + k, the sum in Equality 12.4 is the expected value of the distance
between the target and a given location u. The smaller this expected value is, the more
likely it is that the target is close to u. The location ǔ that has the minimum expected value
is then our best guess at where the target is if we make these decisions and obtain these
observations. So the utility of the decisions and the observations is the expected value for
ǔ. The minus sign occurs because we maximize expected utility.

We then have

EUk(dk) =
∑
fk

Uk(fk, dk)P ′(fk|dk). (12.5)

This expected utility only concerns the situation k time steps into the future. To take into
account all time steps up to and including time t + M , we use a utility function that is a
weighted sum of the utilities at each time step. We then have

EU(dM) =

M∑
k=1

γkEUk(dk), (12.6)

where γk decreases with k to discount the impact of future consequences. Note that implic-
itly γk = 0 for k > M . Note further that we have a time-separable utility function. We
choose the decision sequence that maximizes this expected utility in Equality 12.6, and we
then make the first decision in this sequence at time step t.

In summary, the process proceeds as follows: In time step t the robot updates its proba-
bility distribution based on the evidence (sensor and camera readings) obtained in that step.
Then the expected utility of a sequence of decisions (actions) is evaluated. This is repeated
for other decision sequences, and the one that maximizes expected utility is chosen. The
first decision (action) in that sequence is executed, the sensor and camera readings in time
step t + 1 are obtained, and the process repeats. Notice that the robot develops a plan as
discussed in Section 4.2.2, but the plan is not necessarily carried out beyond the first action.
That is, in the next time slot a new plan is developed.

The computation of P ′(fk|dk) in Equality 12.5 for all values of f can be quite expensive.
Dean and Wellman [1991] discuss ways to reduce the complexity of the decision evaluation.

Result: Emergent Behavior Basye et al. [1992] developed a robot using the model
just described, and they observed some interesting, unanticipated emergent behavior. By
emergent behavior we mean behavior that is not purposefully programmed into the robot,
but emerges as a consequence of the model. For example, when the target moves toward a
fork, the robot stays close behind it, because this will enable it to determine which branch
the target takes. However, when the target moves toward a cul-de-sac, the robot keeps
fairly far away. Basye et al. [1992] expected it to remain close behind. By analyzing the
probability distributions and results of the value function, they discovered that the model
allows for the possibility that the target might slip behind the robot, leaving the robot
unable to determine the location of the target without additional actions. If the robot stays

i
i

i
i

i
i

i
i

12.3 Discussion and Further Reading 345

t t+1

Figure 12.10 Staying close to the target may not be optimal.

some distance away, regardless of what action the target takes, the observations made by the
robot are sufficient to determine the target’s location. Figure 12.10 illustrates the situation.
In time step t, the robot is close to the target as the target is about to enter the cul-de-sac.
If the robot stays close, as illustrated by the top path, in time step t+ 1 it is just as likely
that the target will slip behind the robot as it is that the target will move up the cul-de-sac.
If the target does slip behind the robot, it will no longer be visible. However, if the robot
backs off, as illustrated by the bottom path, the robot will be able to determine the location
of the target regardless of what the target does. When considering its possible observations
in time step t+ 1, the observation “target not visible” would not give the robot a good idea
as to the target’s location. So the move to stay put is less valued than the move to back off.

Large-Scale Systems The method used to control our robot could be used in a more
complex system. For example, an autonomous vehicle could use a vision-based, lane-position
sensor to keep it in the center of its lane. The position sensor’s accuracy would be affected
by rain and an uneven road surface. Also, both rain and a bumpy road could cause the
position sensor to fail. Clearly, sensor failure would affect the sensor’s accuracy. Two time
steps in a dynamic influence diagram, which models this situation, appear in Figure 12.11.

12.3 Discussion and Further Reading

Markov Decision Processes (MDP) [Bellman, 1957] were developed to model deci-
sion making under uncertainty. Partially Observable Markov Decision Processes
(POMDP) [Kaelbling et al., 1998] are a generalization of MDPs. Traditionally, MDPs have
been used in machine learning to model reinforcement learning [Meuleau and Bourgine, 1999].
However, it turns out that POMDPs are mathematically equivalent to Dynamic Bayesian

i
i

i
i

i
i

i
i

346 Chapter 12 Unsupervised Learning and Reinforcement Learning

D[t]

Position-

sensor [t]

Lane-

position [t]

Sensor-

accuracy [t]

Weather [t]

Sensor-

failure [t]

Terrain [t]

Position-

sensor [t+1]

Lane-

position [t+1]

Sensor-

accuracy [t+1]

Weather [t+1]

Sensor-

failure [t+1]

Terrain [t+1]

Figure 12.11 Two time steps in a dynamic influence diagram, which models the decision
faced by an autonomous vehicle.

networks but do not provide the intuitive graphical framework. Vermoral and Mohri [2005]
note that the multi-armed bandit problem is actually a one-state MDP.

EXERCISES

Section 12.1

Exercise 12.1 Either obtain or develop data concerning some entities you wish to classify.
For example, the data could concern the spectra of many stars. Download AutoClass at
http://directory.fsf.org/project/autoclass/, and use AutoClass to classify the entities.

Exercise 12.2 Suppose we have five levers and the following sequence of rewards for the
levers:

http://directory.fsf.org/project/autoclass/

i
i

i
i

i
i

i
i

Exercises 347

round lever 1 lever 2 lever 3 lever 4 lever 5
1 4 2 8 1 12
2 3 5 7 10 8
3 5 7 6 3 15
4 6 4 8 20 6
5 2 9 3 6 12
6 8 8 4 8 14
7 7 10 3 10 12
8 3 2 6 4 10
9 1 14 3 8 9
10 5 3 5 15 14
11 3 8 6 8 20
12 2 5 8 21 8
13 5 15 3 10 10
14 6 2 4 7 9
15 1 4 5 5 15

Apply the ε-Greedy Strategy, the ε-First Strategy, the ε-Decreasing Strategy, and the ε-
LeastTaken Strategy to these levers and this sequence of rewards. Use ε = .3 for the
ε-Greedy, the ε-First, and the ε-LeastTaken Strategies. Use ε = 3 for the ε-Decreasing
Strategy.

Section 12.2

Exercise 12.3 Assign parameter values to the dynamic Bayesian network in Figure 12.7,
and compute the conditional probability of the locations of the robot and the target at time
1 given some evidence at times 0 and 1.

Exercise 12.4 Assign parameter values to the dynamic influence diagram in Figure 12.9,
and determine the decision at time 0 based on some evidence at time 0 and by looking 1
time step into the future.

i i

Part III

Emergent Intelligence

i i

Chapter 13

Evolutionary Computation

In the previous two parts, we modeled human intelligence at the individual cognitive
level, namely human logical reasoning and human probabilistic reasoning. In this part we
model intelligence diplayed in populations of life forms. This chapter concerns the intelligence
manifested in the process of evolution, while the next chapter concerns intelligence that
emerges when some group of autonomous, non-intelligent life forms interact.

Evolution is the process of change in the genetic makeup of populations. Natural
selection is the process by which organisms which have traits that better enable them to
adapt to environmental pressures will tend to survive and reproduce in greater numbers
than other similar organisms, thereby increasing the existence of those favorable traits in
future generations.

Evolutionary computation endeavors to obtain approximate solutions to problems
such as optimization problems using the evolutionary mechanisms involved in natural selec-
tion as its paradigm. The four areas of evolutionary computation are genetic algorithms,
genetic programming, evolutionary programming, and evolutionary strategies. The first two
areas are discussed in detail. First we briefly review genetics to provide a proper context
for the motivation for these algorithms.

i
i

i
i

i
i

i
i

352 Chapter 13 Evolutionary Computation

 A A G T C C G

 T T C A G G C

... ...

Figure 13.1 A section of DNA.

13.1 Genetics Review

This brief review assumes that you have seen this material before. For an introduction to
genetics, see [Griffiths et al., 2007] or [Hartl and Jones, 2006].

An organism is an individual form of life such as a plant or animal. A cell is the basic
structural and functional unit of an organism. Chromosomes are the carriers of biologically
expressed hereditary characteristics. A genome is a complete set of chromosomes in an
organism. The human genome contains 23 chromosomes. A haploid cell contains one
genome; that is, it contains one set of chromosomes. So a human haploid cell contains
23 chromosomes. A diploid cell contains two genomes; that is, it contains two sets of
chromosomes. Each chromosome in one set is matched with a chromosome in the other set.
This pair of chromosomes is called a homologous pair. Each chromosome in the pair is
called a homolog. So a human diploid cell contains 2×23 = 46 chromosomes. One homolog
comes from each parent.

A somatic cell is one of the cells in the body of the organism. A haploid organism
is an organism whose somatic cells are haploid. A diploid organism is an organism whose
somatic cells are diploid. Humans are diploid organisms.

A gamete is a mature sexual reproductive cell that unites with another gamete to
become a zygote, which eventually grows into a new organism. A gamete is always haploid.
The gamete produced by a male is called a sperm, whereas the gamete that is produced
by the female is called an egg. Germ cells are precursors of gametes. They are diploid.

In diploid organisms, each adult produces a gamete, the two gametes combine to form
a zygote, and the zygote grows to become a new adult. This process is called sexual
reproduction. Unicellular haploid organisms commonly reproduce asexually by a process
called binary fission. The organism simply splits into two new organisms. So, each new
organism has the exact same genetic content as the original organism. Some unicellular
haploid organisms reproduce sexually by a process called fusion. Two adult cells first
combine to form what is called a transient diploid meiocyte. The transient diploid
meiocyte contains a homologous pair of chromosomes, one from each parent. A child can
obtain a given homolog from each parent. So the children are not genetic copies of the
parents. For example, if the genome size is 3, there are 23 = 8 different chromosome
combinations that a child could have.

Chromosomes consist of the compound deoxyribonucleic acid (DNA). DNA is com-
posed of four basic molecules called nucleotides. Each nucleotide contains a pentose sugar
(deoxyribose), a phosphate group, and a purine or pyrimidine base. The purines, adenine
(A) and guanine (G), are similar in structure, as are the pyrimidines, cytosine (C) and
thymine (T). DNA is a macromolecule composed of two complementary strands, each strand
consisting of a sequence of nucleotides. The strands are joined together by hydrogen bonds
between pairs of nucleotides. Adenine always pairs with thymine, and guanine always pairs
with cytosine. Each such pair is called a canonical base pair (bp), and A, G, C, and T
are called bases.

A section of DNA is depicted in Figure 13.1. You may recall from your biology course
that the strands twist around each other to form a right-handed double helix. However, for

i
i

i
i

i
i

i
i

13.1 Genetics Review 353

Homologous

pairs align.

Homologous

segments

cross over.

nonrecombinant

chromatid

recombinant

chromatid

nonrecombinant

chromatid

Figure 13.2 An illustration of crossing-over.

our computational purposes, we need only consider them as character strings as shown in
Figure 13.1.

A gene is a section of a chromosome, often consisting of thousands of base pairs, but
the size of genes varies a great deal. Genes are responsible for both the structure and the
processes of the organism. The genotype of an organism is its genetic makeup, while the
phenotype of an organism is its appearance resulting from the interaction of the genotype
and the environment.

An allele is any of several forms of a gene, usually arising through mutation. Alleles are
responsible for hereditary variation.

Example 13.1 The bey2 gene on chromosome 15 is responsible for eye color in humans.
There is one allele for blue eyes, which we call BLUE, and one for brown eyes, which we
call BROWN. As is the case for all genes, an individual gets one allele from each parent.
The BLUE allele is recessive. This means that if an individual receives one BLUE allele
and one BROWN allele, that individual will have brown eyes. The only way the individual
could have blue eyes would be for the individual to have two BLUE alleles. We also say
that the brown allele is dominant. �

Because a human gamete has 23 chromosomes and each of these chromosomes can come
from either genome, there are 223 = 8,388,608 different genetic combinations a parent could
pass on to his or her offspring. Actually, there are many more than this, for the following
reason. During meiosis (the cell division that produces gametes), each chromosome du-
plicates itself and aligns with its homolog. The duplicates are called chromatids. Often
there is an exchange of corresponding segments of genetic material between the homologous
chromatids facing each other. This exchange is called crossing-over and is illustrated in
Figure 13.2.

Sometimes during cell division, errors occur during the DNA replication process. These
errors are called mutations. Mutations can occur in either somatic cells or germ cells. It

i
i

i
i

i
i

i
i

354 Chapter 13 Evolutionary Computation

is believed that mutations in germ cells are the source of all variation in evolution. On the
other hand, mutations in a somatic cell could affect the organism (e.g., cause cancer) but
would have no effect on the offspring.

In a substitution mutation, one nucleotide is simply replaced by another. An in-
sertion mutation occurs when a section of DNA is added to a chromosome; a deletion
mutation occurs when a section of DNA is removed from a chromosome.

Evolution is the process of change in the genetic makeup of populations. It is believed
that the changes in genetic makeup are due to mutations. As noted earlier, natural selec-
tion is the process by which organisms that have traits that better enable them to adapt to
environmental pressures such as predators, changes in climate, or competition for food or
mates will tend to survive and reproduce in greater numbers than other similar organisms,
thereby increasing the existence of those favorable traits in future generations. So, natural
selection can result in an increase in the relative frequencies of alleles that impart to the
individual these favorable traits. The process of the change in allele relative frequencies due
only to chance is called genetic drift. There is some disagreement in the scientific com-
munity as to whether natural selection or genetic drift is more responsible for evolutionary
change [Li, 1997].

13.2 Genetic Algorithms

First we describe the basic genetic algorithm; then we provide two applications.

13.2.1 Algorithm

Genetic algorithms use fusion in haploid organisms as a model. Candidate solutions to a
problem are represented by haploid individuals in a population. Each individual has one
chromosome. The alphabet for the chromosome is not A, G, C, and T as in actual organisms,
but rather consists of characters that represent solutions. In each generation, a certain
number of fit individuals are allowed to reproduce. Individuals representing better solutions
are more fit. The chromosomes from two fit individuals then line up and exchange genetic
material (substrings of the problem solution) by crossing-over. Furthermore, mutations
possibly occur. This results in the next generation of individuals. The process is repeated
until some terminal condition is met.

Algorithm 13.1 Genetic Algorithm

Procedure Generate Populations;
t = 0;
initialize population P0;
repeat

evaluate fitness of each individual in population Pt;
Select individuals for reproduction based on fitness;
Perform crossover and mutation on the selected individuals;
t = t+ 1;

until terminal condition is met;

When selecting individuals based on fitness, we do not necessarily simply choose the
most fit individuals. Rather, we may employ both exploitation and exploration. In general,
when evaluating candidate regions of a search space to investigate, by exploitation we
mean to exploit knowledge already obtained by concentrating on regions that look good,
while by exploration we mean looking for new regions without regard for how good they

i
i

i
i

i
i

i
i

13.2 Genetic Algorithms 355

Table 13.1 Initial Population of Individuals along with Their Fitnesses

Individual x f(x) normed f(x) cumulative normed f(x)
1 0 1 1 1 1 0 1 189 .733 .144 .144
1 1 0 1 1 0 0 0 216 .471 .093 .237
0 1 1 0 0 0 1 1 99 .937 .184 .421
1 1 1 0 1 1 0 0 236 .243 .048 .469
1 0 1 0 1 1 1 0 174 .845 .166 .635
0 0 1 0 0 0 1 1 74 .788 .155 .790
0 0 10 0 0 1 1 35 .416 .082 .872
0 0 1 1 0 1 0 1 53 .650 .128 1.000

currently appear. In the case of choosing individuals, we could explore by choosing a random
individual with probability ε and exploit by choosing a fit individual with probability 1− ε.

13.2.2 Illustrative Example

Suppose our goal is to find the value of x that maximizes

f(x) = sin
(xπ

256

)
in the interval 0 ≤ x ≤ 255,

where x is restricted to being an integer. Of course the sine function has its maximum value
of 1 at π/2, which means x = 128 maximizes the function. So there is no practical reason
to develop an algorithm to solve this problem. However, we develop a genetic algorithm for
solving it to illustrate the various aspects of such algorithms. The following steps are used
to develop the algorithm.

1. Decide on an alphabet to represent solutions to the problem. Because candidate
solutions are simply integers in the range 0 to 255, we can represent each individual
(candidate solution) using 8 bits. For example, the integer 189 is represented as

1 0 1 1 1 1 0 1.

2. Decide on how many individuals make up a population. In general, there can be
thousands of individuals. In this simple example, we will use 8 individuals.

3. Decide how to initialize the population. Often this is done at random. We will generate
8 numbers at random from the range 0 to 255. Possible initial values appear in Table
13.1.

4. Decide on how to evaluate fitness. Because our goal is to maximize f(x) = sin (xπ/256),
the fitness of individual x is simply the value of this function.

5. Decide on which individuals to select for reproduction. We will combine exploration
with exploitation as follows. The fitnesses are normalized by dividing each fitness by
the sum of all the fitnesses, which is 5.083, to yield normalized fitnesses. In this
way, the normalized fitnesses add to 1. These normalized fitnesses are then used to
determine cumulative fitness values, which provide a wedge on a roulette wheel for each
individual based on its fitness. This is shown in Table 13.1. For example, the second
individual has a normalized fitness of .093 and that individual is assigned the wedge
corresponding to the interval (.144, .237], which has width .093. We then generate a
random number from the interval (0, 1]. That number will fall in the range assigned to

i
i

i
i

i
i

i
i

356 Chapter 13 Evolutionary Computation

Table 13.2 Individuals Chosen for Reproduction

Individual
0 1 1 0 0 0 1 1
0 0 1 1 0 1 0 1
1 1 0 1 1 0 0 0
1 0 1 0 1 1 1 0
0 1 0 0 1 0 1 0
1 0 1 0 1 1 1 0
0 1 1 0 0 0 1 1
1 0 1 1 1 1 0 1

Table 13.3 Parents and Children Resulting from Crossover

Parents Children x f(x)

0 1 11|0 0 0|21 1 0 1 11|1 0 1|21 1 119 .994

0 0 1 |1 0 1| 0 1 0 0 1 |0 0 0| 0 1 33 .394

11|1 0 1 1|20 0 0 11|0 1 0 1|20 0 0 168 .882

1 |0 1 0 1| 1 1 0 1 |1 0 1 1| 1 1 0 222 .405

0 1 |20 0 1 0 11|0 1 0 |20 0 1 0 11 |0 138 .992

1 0 | 1 0 1 1 1 |0 0 1 | 1 0 1 1 1 |0 110 .976

0 1 1 0 01|0 1 1|2 0 1 1 0 01|1 0 1|2 101 .946

1 0 1 1 1 |1 0 1| 1 0 1 1 1 |0 1 1| 187 .749

precisely one individual, and this is the individual chosen. This process is performed
8 times.

Suppose the individuals chosen for reproduction are the ones appearing in Table 13.2.
Note that an individual can appear more than once, and the likelihood of how often
it appears depends on its fitness.

6. Determine how to perform crossovers and mutations. First, we randomly pair indi-
viduals, resulting in 4 pairs. For each pair, we randomly select two points along the
individuals. Genetic material between the crossover points is exchanged. Table 13.3
shows possible results. Note that if the second point appears before the first point
in the individual, crossover is performed by wrapping around. The third pair of in-
dividuals in Table 13.3 illustrates this case. Based on the values in Tables 13.1 and
13.3, the average fitness before crossover is .635, while that after crossover is .792.
Furthermore, after crossover, two individuals have fitnesses above .99.

Next we determine how to perform mutations. For each bit in each individual, we de-
cide at random whether to flip the bit (change 0 to 1 or 1 to 0). Mutation probabilities
are commonly in the range .01 to .001.

7. Decide when to terminate. We could terminate when some maximum number of
generations is attained, or when some allotted amount of time has expired, or when
the fitness of the most fit individual reaches a certain level, or when one of these

i
i

i
i

i
i

i
i

13.2 Genetic Algorithms 357

conditions is met. For example, in this example, we could terminate when either
10,000 generations are produced or when the fitness exceeds .999.

Note that Steps 2, 3, 5, and 7 above are generic in the sense that we can apply the
strategies mentioned to most problems.

13.2.3 Traveling Salesperson Problem

The Traveling Salesperson Problem is a well-known NP-hard problem. NP-hard problems
are a class of problems for which no one has ever developed a polynomial-time algorithm,
but no one has ever shown that such an algorithm is not possible.

Suppose a salesperson is planning a sales trip to n cities. Each city is connected to some
of the other cities by a road. To minimize travel time, we want to find a shortest route
(called a tour) that starts at the salesperson’s home city, visits each of the cities once, and
ends up at the home city. The problem of determining a shortest tour is the Traveling
Salesperson Problem (TSP). Note that the starting city is irrelevant to the shortest
tour.

The TSP problem is represented by a weighted directed graph in which the vertices
represent the cities and the weights on the edges represent road lengths. In general, the
graph in an instance of TSP need not be complete, which is a graph in which there is
an edge from every vertex to every other vertex. Furthermore, if the edges vi → vj and
vj → vi are both in the graph, their weights need not be the same. Besides application
to transportation scheduling, TSP has been applied to problems such as scheduling of a
machine to drill holes in a circuit board and DNA sequencing.

Next we show three genetic algorithms for TSP.

13.2.3.1 Order Crossover

Order crossover is presented first. Only the steps that are different from those that appear
Section 13.2.2 are shown.

1. Decide on an alphabet to represent solutions to the problem. A straightforward repre-
sentation of a solution to TSP is to label the vertices 1 through n and list the vertices
in the order visited. For example, if there are 9 vertices, [2 1 3 9 5 4 8 7 6] represents
that we visit vertex v1 after v2, v3 after v2,..., and v2 after v6. Again, the starting
vertex is irrelevant.

4. The fitness is the length of the tour, where tours with shorter lengths are more fit.

6. Determine how to perform crossovers and mutations. As before, individuals are ran-
domly paired and, for each pair, two points are randomly selected along the individuals.
Call the segment between those points the pick. We must make sure the results of a
crossover are legitimate tours, which means each city must be listed only once. So, we
cannot simply exchange picks. In order crossover, the pick in the child has the same
value as the pick in the parent, whereas the non-pick area is filled in from values in
the other parent, omitting values that are not already present, in the order in which
those values appear in the other parent, starting from the other parent’s pick. These
values are called its template. Table 13.4 illustrates this. Notice that child c1 has
value [9 5 4] for the pick just as parent p1. The pick for parent p2 is [6 8 9]. The
template from this parent is constructed by starting at site 6 and in sequence listing
all cities that are not in [9 5 4]. This is done with wrap-around. So the template is [6
8 7 1 3 2]. These values are copied in order into the non-pick area of child c2.

i
i

i
i

i
i

i
i

358 Chapter 13 Evolutionary Computation

Table 13.4 An Example of Order Crossover

Parents Other Parent Template Children

p1: 2 1 31|9 5 4|28 7 6 6 8 7 1 3 2 from p2 c1: 6 8 71|9 5 4|21 3 2

p2: 5 3 2 |6 8 9| 7 1 4 5 4 7 2 1 3 from p1 c2: 5 4 7 |6 8 9| 2 1 3

If the graph is not complete, we would need to check whether the new child represents
an actual tour, and if it does not reject the crossover.

As far as mutations, we cannot just mutate a site by changing a given vertex to another
vertex because a vertex would then appear twice. We could mutate by interchanging
two vertices or reversing the order of a subset of vertices. However, if the graph is not
complete, we must make certain that the result represents an actual tour.

13.2.3.2 Nearest Neighbor Crossover

The Nearest Neighbor Algorithm (NNA) for TSP is an example of a greedy algorithm.
A greedy algorithm arrives at a solution by making a sequence of choices, each of which
simply looks best at the moment. NNA starts with an arbitrary vertex to initiate a tour,
and then repeatedly adds the closest unvisited vertex to the partial tour until a tour is
completed. NNA assumes the graph is complete; otherwise it may not result in a tour. The
algorithm follows.

Algorithm 13.2 Nearest Neighbor

Procedure Generate Tour(var tour);
tour = [vi] where vi is chosen at random;
repeat

add unvisited vertex to tour
that is closest to current last vertex in tour;

until all vertices are in tour;

Figure 13.3 (a) shows an instance of TSP where the undirected edges represent that
there is a directed edge with the given weight in both directions, Figure 13.3 (b) shows the
shortest tour, Figure 13.3 (c) shows the tour obtained when we apply NNA starting at v4,
and Figure 13.3 (d) shows the tour obtained when we apply NNA starting at v1. Note that
this latter tour is the optimal one.

Next we present Nearest Neighbor Crossover (NNX), taken from [Süral et al., 2010].
The steps shown are the ones used by those researchers when evaluating the algorithm.

1. Decide on an alphabet to represent solutions to the problem. The representation is the
same as that for order crossover which appears at the beginning of Section 13.2.3.1.

2. Decide on how many individuals make up a population. Population sizes of 50 and
100 were used.

3. One technique tried was to initialize the entire initial population at random. A second
technique was to initialize half of the population at random and the other half using
a hybrid technique involving NNX and GEA (discussed next).

4. Decide on how to evaluate fitness. The fitness is the same as that for order crossover.

i
i

i
i

i
i

i
i

13.2 Genetic Algorithms 359

v
1

v
2

v
4

v
3

4

1

6

2

3

5

(a) an instance of TSP

v
1

v
2

v
4

v
3

12

3

5

(b) a shortest tour

v
1

v
2

v
4

v
3

4

1

6

2

(c) NNA starting at v
4

(d) NNA starting at v
1

v
1

v
2

v
4

v
3

12

3

5

Figure 13.3 An instance of TSP illustrating the nearest neighbor algorithm.

5. Decide on which individuals to select for reproduction. The top 50% of individuals
ordered according to fitness are allowed to reproduce. Four copies of each of these
individuals are put in a pool. Then pairs of parents are randomly selected without
replacement from the pool.

6. Determine how to perform crossovers and mutations. In NNX, two parents produce
only one child. So the process is not really crossover; nevertheless, we call it that. The
parents first combine to form a union graph, which is a graph containing the edges
in both parents. This process is illustrated in Figure 13.4. Then NNA is applied to
the union graph. This is also shown in Figure 13.4. In that figure we applied NNA
starting with vertex v6, and we obtained a child that is more fit than either parent. It
is left as an exercise to show that if we start at v1, this does not happen. If we start at
v3, we reach a dead-end at v1 and do not obtain a tour. If the chosen vertex does not
result in a tour, we can try other vertices until one does. If no starting vertex results
in a tour, we can make other edges in the complete graph eligible for our tour.

Note that because four copies of each parent are used and each pair of parents produce
one offspring, the child generation is twice as large as the number of parents allowed
to reproduce. However, because only half of the parents are allowed to do so, the size
of the population stays the same in each generation.

Mutations are performed as follows. Two vertices are selected at random, and the
subpath connecting the two vertices is reversed. This is illustrated in Figure 13.5,
where the vertices selected are v1 and v7. There are two versions of mutation. In
version M1, the mutation is applied only to the best offspring in each generation. In
version M2, it is applied to all offspring.

As a variation, a stochastic version of NNX would choose the next edge incident to
the current vertex probabilistically. The chance of being chosen would be inversely
proportional to the length of the edge. It is possible to increase population diversity by
doing this and thereby increase the portion of the search space investigated. However,

i
i

i
i

i
i

i
i

360 Chapter 13 Evolutionary Computation

Form union

graph.

Apply NNA to union graph

starting at v
6
.

v
1

v
2

v
5

v
4

v
3

v
6

v
1

v
2

v
5

v
4

v
3

v
6

v
1

v
2

v
5

v
4

v
3

v
6

3

7

2

1

8

3

4

4
6

5
4

2

1

4

5

2

3

7

3

2
8

4

6

4

v
1

v
2

v
5

v
4

v
3

v
6

2

1

3

4

5
4

Parents

Child

Figure 13.4 The union graph is formed and then the NNA is applied to that graph starting
a vertex v6.

Süral et al. [2010] found that this stochastic technique performed significantly worse
than the deterministic version, and did not include this in their final testing, which
we discuss shortly.

7. Decide when to terminate. The algorithm terminates when the average fitness in two
successive generations is the same or when 500 generations are produced.

NNA and NNX are very similar to Dikstra’s algorithm for the Shortest Paths Problem
(see [Neapolitan, 2015]), and like that algorithm takes θ(n2) time, where n is the number of
vertices.

13.2.3.3 Greedy Edge Crossover

In the Greedy Edge Algorithm (GEA), we first sort the edges in nondecreasing sequence.
We then greedily add edges to the tour, starting with the first edge, while making certain
that no vertex has more than two edges touching it and that no cycle smaller than n is
created. GEA assumes the graph is complete; otherwise it may not result in a tour. The
algorithm follows.

i
i

i
i

i
i

i
i

13.2 Genetic Algorithms 361

v
4

v
2

v
1

v
5

v
3

v
7

v
6

v
8

v
4

v
2

v
7

v
3

v
5

v
1

v
6

v
8

Figure 13.5 A mutation in which the subpath connecting vertices v1 and v7 is reversed.

Algorithm 13.3 Greedy Edge

Procedure Generate Tour(var tour);
Sort the edges in nondecreasing order;
tour = ∅; // The tour is represented by a set of edges.
repeat

if adding next edge to tour does not result in
a vertex having two edges touching it
and does not create a cycle smaller than n

add the edge to tour;
until there are n− 1 edges in tour;

Figure 13.6 illustrates GEA using the same instance of GEA as in Figure 13.3.
The Greedy edge crossover algorithm (GEX) (also in [Süral et al., 2010]) has all the

same steps as NNX except the 6th step which we show next.

6. Determine how to perform crossovers and mutations. As in NNX, in GEX the parents
first combine to form a union graph. Then GEA is applied to the edges in this union
graph. If this process does not result in a tour, the remaining edges in a tour are
obtained by applying GEA to the complete graph. This process, however, will result in
little exploration and therefore high edge preservation and possible early convergence
to a low-quality solution. To increase exploration, the first half of the new tour can be
taken from the union graph and the second half from the complete graph. In initial
investigations, this version performed much better than the one that took as many
edges as possible from the union graph. This is the version that was used in the
evaluation discussed next.

NNA and NNX are very similar to Kruskal’s algorithm for the Minimum Spanning
Tree Problem (see, e.g., [Neapolitan, 2015]), and like that algorithm take θ(n2 log n) and
θ(m logm) time, where n is the number of vertices and m is the number of edges.

13.2.3.4 Evaluation

As is the case for many heuristic algorithms, genetic algorithms do not have provably correct
properties. Therefore, we evaluate them by investigating their performance on a number of
instances of the problem. Süral et al. [2010] did this as follows for NNX and GEX.

First, they obtained 10 instances of TSP from the TSPLIB, which represent distances
between real cities and in which the distance is symmetric (the same in both directions).
The largest instance had n (the number of cities) = 226. They investigated versions of

i
i

i
i

i
i

i
i

362 Chapter 13 Evolutionary Computation

v
1

v
2

v
4

v
3

4

1

6

2

3

5

Determine a shortest tour. 1. Edges are sorted by weight

(v
2
,v

3
) 1

(v
1
,v

2
) 2

(v
2
,v

4
) 3

(v
1
,v

2
) 4

(v
1
,v

3
) 5

(v
3
,v

4
) 6

v
1

v
2

v
4

v
3

2. Disjoint sets are created.

v
1

v
2

v
4

v
3

1

2. Edge (v
2
,v

3
) is selected.

v
1

v
2

v
4

v
3

12

3. Edge (v
1
,v

4
) is selected.

v
1

v
2

v
4

v
3

12

3

4. Edge (v
2
,v

4
) is selected.

v
1

v
2

v
4

v
3

12

3

4. Edge (v
1
,v

2
) is rejected.

v
1

v
2

v
4

v
3

12

3

5

5. Edge (v
1
,v

5
) is selected.

Figure 13.6 An instance of TSP illustrating the Greedy Edge Algorithm.

NNX and GEX using no mutations, mutations M1 (discussed above), and mutations M2
(discussed above). Furthermore, they tried initializing the first population at random (R)
and initializing using a hybrid technique (H) based on nearest neighbor and greedy edge
heuristics. For each combination of mutation type and initialization type, they ran each
of the algorithms 30 times on each of the 10 instances, making a total of 300 runs. The
algorithm was coded in ANSIC and run on a Pentium IV 1600 MHz machine with 256 MB
RAM running RedHat Linux 8.0.

Table 13.5 shows the averages over all 300 runs. The headings in that table denote the
following:

• Algorithm: The algorithm used.

• Mutation: The type of mutation used.“No M” denotes no mutations.

• Int. Pop.: Whether the population was initialized at random (R) or using hybrid
initialization (H).

• Dev: Percent deviation of the final best solution from the optimal solution.

• #Gen: Number of generations until convergence.

• Time: Time in seconds until convergence.

i
i

i
i

i
i

i
i

13.2 Genetic Algorithms 363

Table 13.5 Average Results over 300 Runs on Each of 10 Small Problem Instances where
Population Size Is 50

Algorithm Mutation Init. Pop. Dev #Gen Time
No M R 3.10 45.39 0.38

H 4.82 33.52 2.95
NNX M1 R 1.67 40.21 0.62

H 1.57 36.09 3.55
M2 R 0.55 53.37 5.52

H 0.55 43.53 8.11
No M R 12.54 17.35 48.23

H 7.19 16.37 54.27
GEX M1 R 4.36 60.44 208.70

H 3.67 48.44 178.65
M2 R 3.30 26.30 82.79

H 3.01 25.83 90.58
No M R 8.15 42.50 73.25

H 5.53 38.47 75.67
50% NNX M1 R 1.92 66.04 113.81
50 % GEX H 1.68 61.21 112.77

M2 R 1.76 19.25 26.40
H 1.61 20.68 34.19

No M R 7.23 41.16 13.39
H 5.19 34.93 14.95

90% NNX M1 R 1.84 55.60 19.14
10% GEX H 1.67 46.93 20.16

M2 R 0.51 37.13 19.26
H 0.48 37.24 21.95

no M R 6,69 41.23 6.74
H 5.06 33.04 8.93

95% NNX M1 R 1.77 52.62 10.03
5% GEX H 1.41 44.33 11.30

M2 R 0.49 37.15 11.58
H 0.44 36.19 14.88

Table 13.6 Average Results over 30 Replications of 10 Small Problem Instances where
Population Size Is 100 and the Initial Population Is Generated at Random

Algorithm Mutation Dev Time
No M 5.40 18.4

NNX M1 1.44 26.4
M2 0.35 26.2

i
i

i
i

i
i

i
i

364 Chapter 13 Evolutionary Computation

Table 13.7 Average Results over 10 Replications of 15 Large Problem Instances where
Population Size is100 and Initial Population Is Generated at Random

Algorithm Mutation Dev Time
No M 7.61 25.3

NNX M1 4.94 65.0
M2 4.70 1063.0

We see from Table 13.5 that NNX performed much better than GEX, that mutation M2
performed the best of the mutations, and that hybrid initialization did not result in much
better performance than random initialization. The researchers then investigated whether
using NNX with various percentage usage of GEX might improve performance. Table 13.5
also shows these results. When, for example, it says 50% NNX and 50% GEX, it means
that 50% of the time the next population was generated using NNX and the other 50% of
the time it was generated using GEX. Slight improvement over pure NNX was observed in
the case of mutation M2 for the higher percentages of NNX usage.

Based on these results, the researchers concluded that using mixtures of the two al-
gorithms was not worth the increased computational time. So further experiments were
performed using only NNX by itself.

Using only NNX with random initialization but with a population size of 100, they
obtained the results in Table 13.6. Note that for mutation M2, the average percent deviation
is 0.35 and the average time is 26.2. Looking again at Table 13.5 we see that using this
same combination with a population size of 50, the average percent deviation is 0.55 and
the average time is 5.52. This increase in accuracy should be worth the increased time.

Next the researchers investigated larger instances from TSPLIB in which 318 ≤ n ≤ 1748.
Having concluded that hybrid initialization is also not worth additional time, they ran NNX
10 times on each of these instances with random initialization and a population size of 100.
Table 13.7 shows the results. Curiously, on the large problem instances, mutation M2 did
not do much better than mutation M2 but required substantially more computation time.
Looking again at Table 13.6 we see that in the case of small instances M2 performed much
better than M1 with little increased computational cost.

Simply testing a heuristic algorithm on a number of instances does not show if it as
an advancement. We need to see how it fares relative to previously existing heuristic al-
gorithms. Süral et al. [2010] compared NNX to the heuristic TSP algorithms Meta-RaPS
[DePuy et al., 2005] and ESOM [Leung et al., 2004] using 10 benchmark TSP instances.
Table 13.8 shows the results. Either NNX-M1 (mutation M1) or NNX-M2 (mutation M2)
performed the best for every problem instance.

13.3 Genetic Programming

Whereas in genetic algorithms the “chromosome” or “individual” represents a solution to
a problem, in genetic programing the individual represents a program that solves a
problem. The fitness function for the individual in some way measures how well the program
solves the problem. We start with an initial population of programs, allow the more fit
programs to reproduce by crossover, perform mutations on the population of children, and
then repeat this process until some terminal condition is met. The high-level algorithm for
this procedure is exactly the same as the one for genetic algorithms. However, we show it
next for completeness.

i
i

i
i

i
i

i
i

13.3 Genetic Programming 365

Table 13.8 A Comparison of NNX to Two Other Heurisic Algorithms for TSP for 10
Problem Instances

NNX-M1 NNX-M2 Meta-RaPS ESOM3
Problem Dev Time1 Dev Time1 Dev Time2 Dev Time3

ei101 0.93 8.7 0.82 14.3 NA NA 3.43 NA
bier127 0.62 15.3 0.28 12.0 0.90 48 1.70 NA
pr136 2.87 18.4 0.37 35.2 0.39 73 4.31 NA

kroa200 1.78 87.3 0.32 98.6 1.07 190 2.91 NA
pr226 0.79 93.0 0.01 21.6 0.23 357 NA NA
lin318 1.87 8.0 2.01 105 NA NA 2.89 NA
pr439 3.44 10.0 1.48 240 3.30 2265 NA NA

pcb442 4.75 15.0 3.18 270 NA NA 7.43 NA
pcb1173 3.00 97.0 8.01 1230 NA NA 9.87 200
vm1748 7.05 203 7.09 4215 NA NA 7.27 475
1 Pentium 4.16 GHz; 2 AMD Athlon 900 MHz; 3 SUN Ultra 5/270

Algorithm 13.4 Genetic Programming

Procedure Generate Populations;
t = 0;
initialize population P0;
repeat

evaluate fitness of each individual in population Pt;
Select individuals for reproduction based on fitness;
Perform crossover and mutation on the selected individuals;
t = t+ 1;

until terminal condition is met;

The individuals (programs) in a genetic program are represented by trees in which in each
node is either a terminal symbol or a function symbol. If a node is a function symbol,
it arguments are its children. As an example, suppose we have the following mathematical
expression (program):

x+ 2

5− 3× x
. (13.1)

Its tree structure representation appears in Figure 13.7.

13.3.1 Illustrative Example

A simple way to illustrate genetic programming is to show an application that learns a
function y = f(x) from pairs of points (xi, yi) known to satisfy the function. For example,
suppose we have the pairs of points in Table 13.9.

These points were actually generated from the function

y = x2/2.

However, we are assuming that we do not know this, and are trying to discover the function.
Steps for developing a genetic program for this discovery problem are as follows:

1. Decide on the terminal set T. Let the terminal set include the symbol x and the
integers between -5 and 5.

i
i

i
i

i
i

i
i

366 Chapter 13 Evolutionary Computation

/

–+

x 2 5 x

3 x

Figure 13.7 A tree representing Expression 13.1.

Table 13.9 We Want to Learn a Function That Describes the Relationship between x and
y Based on These 10 Points.

x y
0 0
.1 .005
.2 .020
.3 .045
.4 .080
.5 .125
.6 .180
.7 .245
.8 .320
.9 .405

2. Decide on the function set F. Let the function set be the symbols +, −, ×, and /.
Note that we could include other functions such as sin, cos, etc. if desired.

3. Decide on how many individuals make up a population. Our population size will be
600.

4. Decide how to initialize the population. Each initial individual is created by a process
called growing the tree. First, a symbol is randomly generated from T ∪ F. If it
is a terminal symbol, we stop and our tree consists of a single node containing this
symbol. If it is a function symbol, we randomly generate children for the symbol.
We continue down the tree, randomly generating symbols and stopping at terminal
symbols. For example, the tree in Figure 13.7 would be obtained by the following
random generation of symbols: First the symbol / is generated, followed by the values
of + and − for its children. The children generated for + are x and 2. We stop at
each of these children. The children generated for − are 5 and ×. We stop at the 5,
and finally generate the children 3 and x for the ×.

5. Decide on a fitness function. The fitness function will be the square error. That is,

i
i

i
i

i
i

i
i

13.3 Genetic Programming 367

the fitness of function f(x) is as follows:

10∑
i=1

(f(xi)− yi)2,

where each (xi, yi) is a point in Table 13.9. Functions with smaller errors are more fit.

6. Decide on which individuals to select for reproduction. A 4 individual tournament
selection process is used. In the tournament selection process, n individuals are
randomly selected from the population. In this case, n = 4. We say that these n
individuals enter a tournament in which the n/2 most fit of them win and the n/2
least fit lose. The n/2 winners are allowed to reproduce to produce n/2 children.
These children replace the n/2 losers in the population for the next generation. In
this case, the 2 winners reproduce twice to produce 2 children who replace the 2 losers.

A small tournament size results in low selection process, whereas a high tournament
size results in high pressure.

7. Decide on how to perform crossovers and mutations. Crossover between two individ-
uals will be performed by exchanging randomly selected subtrees. Such a crossover
is illustrated in Figure 13.8. Mutations are performed by randomly selecting a node
and replacing the subtree at that node by a growing a new subtree. Mutations are
randomly performed on 5% of the offspring.

8. Decide when to terminate. Terminate when the square error of the most fit individual
is 0 or when 100 generations have been produced.

Banzhaf et al. [1998] applied the technique just presented to the data in Table 13.9. The
following shows the most fit individual in the first 4 generations:

Generation Most Fit Individual

1
x

3

2
x

6− 3x

3
x

x(x− 4)− 1 + 4
x −

9(x+1)
5x +x

6−3x

4
x2

2

The most fit individual had expanded to a very large tree by generation 3 but shrunk back
down to the correct solution (the function generating the data) by generation 4.

13.3.2 Artificial Ant

Consider the problem of developing a robotic ant that navigates along a trail of food. Figure
13.9 shows such a trail called the “Sante Fe trail.” Each black square represents one pellet
of food; there are 89 such squares. The ant starts at the square labeled “start” facing right,
and its goal is to arrive at the square labeled “89” after visiting all 89 black squares (thereby
eating all the food on the trail) in as few time steps as possible. Notice that there are a

i
i

i
i

i
i

i
i

368 Chapter 13 Evolutionary Computation

/

-+

x 2 4 x

3 x

+

x/

3 x 2+

5 x

/

+

x 2

+

5 x

+

x/

3 x 2-

4 x

3 x

Figure 13.8 Crossover by exchanging subtrees.

number of gaps along the trail. The problem with a time limit represents a challenging
planning problem.

The ant has one sensor as follows:

food ahead: Has value True of there is food in the square the ant is facing; otherwise has
value False.

There are three different actions the ant can execute in each time slot:

right: The ant turns right by 90◦ (without moving).

left: The ant turns left by 90◦ (without moving).

move: The ant moves forward into the square it is facing. If the square contains food, the
ant eats the food, thereby eliminating the food from the square and erasing it from
the trail.

Koza [1992] developed the following genetic programming algorithm for this problem.

i
i

i
i

i
i

i
i

13.3 Genetic Programming 369

Start

89

Figure 13.9 The Santa Fe trail. Each black square reprsents a pellet of food.

1. Decide on the terminal set T. The terminal set contains the actions the ant can take.
That is,

T = {right, left,move}.

2. Decide on the function set F. The function set is as follows:

(a) if food ahead(instruction1, instruction2).

(b) do2(instruction1, instruction2).

(c) d03(instruction1, instruction2, instruction3).

The first function executes instruction1 if food ahead is true; otherwise it executes
instruction2. The second function unconditionally executes instruction1 and instruction2.
The third function unconditionally executes instruction1, instruction2, and instruction3.
For example,

do2(right,move)

causes the ant to turn right and then move ahead.

3. Decide on how many individuals make up a population. The population size is 500.

4. Decide how to initialize the population. Each initial individual is created by growing
the tree (see Section 13.3.1).

5. Decide on a fitness function. It is assumed that each action (right,left,move) takes one
time step, and each individual is allowed 400 time steps. Each individual starts in the
upper left-hand square facing east. Fitness is defined to be the number of food pellets
consumed in the allotted time. So the maximum fitness is 89.

6. Decide on which individuals to select for reproduction.

i
i

i
i

i
i

i
i

370 Chapter 13 Evolutionary Computation

if_food_

ahead

movemove right do2right

do3

left

if_food_

ahead
move

left do2 do2

if_food_

ahead
do2

move

rightleft

Figure 13.10 The individual in generation 22 with a fitness equal to 89.

7. Decide on how to perform crossovers and mutations. Crossover between two individ-
uals will be performed by exchanging randomly selected subtrees. Such a crossover is
illustrated in Figure 13.8. Mutations are performed by randomly selecting a node and
replacing the subtree at that node by growing a new subtree. Mutations are randomly
performed on 5% of the offspring.

8. Decide when to terminate. Terminate when one individual has a fitness of 89 or some
maximum amount of iterations is reached.

In each iteration, each individual in the population (program) is run repeatedly until
400 time steps are performed. The individual’s fitness is then evaluated. In one particular
run, Koza [1992] obtained an individual with a fitness equal to 89 in the 22nd generation.
That individual appears in Figure 13.10. The average fitness of individuals in generation 0
was 3.5, while the most fit individual in generation 0 had a fitness of 32.

13.3.3 Application to Financial Trading

An important decision facing everyone who invests in the stock and other financial markets
is whether to buy, sell, or hold on a given day. There have been many efforts to develop
automated systems that make this decision for us. Farnsworth et al. [2004] developed such
a system using genetic programming. Their system makes an investment decision based on
values of market indicators on a given day. We discuss that system next.

13.3.3.1 Developing the Trading System

First we show the eight steps used to create the system.

1. Decide on the terminal set T. The terminal symbols are the market indicators. The
researchers tried and tested various indicators before deciding on the ones to include

i
i

i
i

i
i

i
i

13.3 Genetic Programming 371

in the final system. We only present the final ones. They are as follows:

(a) The S&P500 is a market index based on 500 leading companies in leading indus-
tries of the U.S. economy. For a given day, the indicator based on the S&P500 is
as follows:

S&P500today − S&P500avg
S&P500σ

,

where S&P500today is the value of the S&P500 on the current day, S&P500avg is
the average value over the past 200 days, and S&P500σ is the standard deviation
over the past 200 days.

We denote this indicator simply as SP500.

(b) The k-day Exponential Moving Average (EMA) for a security is a weighted
average of the security over the past k days. The Moving Average Conver-
gence/Divergence (MACD) of a security x is as follows:

MACD(x) = 12-day EMA(x)− 26-day EMA(x).

The MACD is considered a momentum indicator. When it is positive, traders say
upside momentum is increasing; when it is negative, they say downside momen-
tum is increasing.

A second indicator used in this system is MACD(S&P500), which we denote
simply as MACD.

(c) The indicator MACD9 is the 9-day EMA of the MACD of the S&P500.

(d) Let Diff be the difference of the number of advancing and declining securities.
That McClennan Oscillator (MCCL) is as follows:

MCCL = 19-day EMA(Diff)− 39-day EMA(Diff).

Traders consider the market overbought when MCCL > 100 and oversold when
MCCL < −100.

We denote this indicator simply as MCCL.

(e) The indicators SP500lag, MACDlag, MACD9lag, and MCCLlag are the val-
ues of those indicators on the previous day.

(f) Other terminal symbols include real constants in the interval [−1, 1].

All indicator values were normalized to the interval [−1, 1].

2. Decide on the function set F. Function symbols include +, −, and ×, and the following
control structures:

(a) if x > 0 then y else z. This structure is represented in the tree with the symbol
IF having the children x, y, and z.

(b) if x > w then y else z. This structure is represented in the tree with the symbol
IFGT having the children x, w, y, and z.

3. Decide on how many individuals make up a population. Various population sizes were
tried. Sizes below 500 were ineffectual, whereas ones around 2500 had good results.

4. Decide how to initialize the population. Each initial individual was created by growing
the tree as discussed in Section 13.3.1. The maximum number of levels allowed was
4 and the maximum number of total nodes allowed was 24. This restriction was
also enforced in future populations. The purpose of these limitations was to avoid
overfitting, which occurs when the tree matches the training data very closely but
has limited predictive value for unseen data.

i
i

i
i

i
i

i
i

372 Chapter 13 Evolutionary Computation

IFGT

MACD9

lag

MCCL

lag

SP500 SP500 MACD9 MCCL0.74 MACD

+ SP500

MACD9

lag

MACD

lag

MACD

lag

x IF + IF 0.94
MACD

lag

IFGT

Figure 13.11 A tree that survived as most fit in one run and performed well in an evalua-
tion.

5. Decide on a fitness function. Data was obtained on the S&P closing prices from April
4, 1983, to June 18, 2004. A given tree analyzes the first 4750 days of this data. The
tree starts with $1 on the first day. If the tree returns a value greater than 0 on a given
day, a buy signal is generated, otherwise a sell signal is generated. All the current
money is always invested or withdrawn when there is a buy or a sell. There are no
partial investments. If the tree was in the market on the previous day and a buy signal
is generated, no action is taken. Similarly, if the tree was out of the market on the
previous day and a sell signal is generated, no action is taken. When the 4750 days of
trading are complete, the initial dollar is subtracted so that the final value represents
profit. To further avoid overfitting, a fitness penalty proportional to the total number
of transactions was imposed.

6. Decide on which individuals to select for reproduction. The population is sorted
according to fitness. The bottom 25% are “killed off” and replaced by more fit indi-
viduals.

7. Decide on how to perform crossovers and mutations. Crossover between two individ-
uals is performed by exchanging randomly selected subtrees. Node mutations are
done by randomly selecting a few nodes and randomly changing their values to nodes
that take the same arguments. Mutations to function nodes change operations, and
mutations to terminal nodes change indicator or constant values. Tree mutations
are performed by randomly selecting a subtree and replacing it by a new random
subtree.

The top 10% of the population are left unchanged; 50% are randomly selected for
crossover with individuals from the top 10%; 20% are selected for node mutations;
10% are selected for tree mutations; and 10% are killed and randomly replaced.

8. Decide when to terminate. The maximum number of generations was in the 300–500
range.

Figure 13.11 shows a tree that survived as the most fit tree in one particular run.

13.3.3.2 Evaluation

Recall that data was obtained on the S&P closing prices from April 4, 1983, to June 18,
2004, and the first 4750 days of these data were used to determine the fitness and thereby

i
i

i
i

i
i

i
i

13.4 Discussion and Further Reading 373

learn a system. The remaining 500 days were used to evaluate a system by computing its
fitness based on these data. The system represented by the tree in Figure 13.11 had an
evaluation fitness of 0.397. The buy-and-hold strategy in investing is simply to buy a
security and hold on to it. Based on the evaluation data, the buy-and-hold strategy only
had a fitness of 0.1098.

13.4 Discussion and Further Reading

The remaining two areas of evolutionary computation are evolutionary programming and
evolution strategies. Evolutionary programming is similar to genetic algorithms in that
it uses a population of candidate solutions to evolve into an answer to a specific problem.
Evolutionary programming differs in that the concentration is on developing behavioral
models of the observable system interaction with the environment. Fogel [1994] presents
this approach. Evolution strategies models problem solutions as species. Rechenberg
[1994] says that the field of evolution strategies is based on the evolution of evolution. See
[Kennedy and Eberhart, 2001] for a complete introduction to all four areas of evolutionary
computation.

EXERCISES

Section 13.1

Exercise 13.1 Describe the difference between sexual reproduction in diploid organisms,
binary fission in haploid organisms, and fusion in haploid organisms.

Exercise 13.2 Suppose a diploid organism has 10 chromosomes in one of its genomes.

1. How many chromosomes are in each of its somatic cells?

2. How many chromosomes are in each of its gametes?

Exercise 13.3 Suppose two adult haploid organisms reproduce by fusion.

1. How many children will be produced?

2. Will the genetic content of the children all be the same?

Exercise 13.4 Consider the eye color of a human being as determined by the bey2 gene.
Recall that the allele for brown eyes is dominant. For each of the following parent allele
combinations, determine the eye color of the individual.

Father Mother
BLUE BLUE
BLUE BROWN

BROWN BLUE
BROWN BROWN

i
i

i
i

i
i

i
i

374 Chapter 13 Evolutionary Computation

v
1

v
2

v
4

v
3

4

6

2

3

5
v
5

1

7

2

3

Figure 13.12 An instance of TSP.

v
1

v
2

v
5

v
4

v
3

v
6

6

4

5

2

2

v
1

v
2

v
5

v
4

v
3

v
6

1

4

5

8

3

7

3

Figure 13.13 Two tours.

Section 13.2

Exercise 13.5 Consider Table 13.1. Suppose the fitnesses of the eight individuals are .61,
.23, .85, .11, .27, .36, .55, and .44. Compute the normed fitnesses and the cumulative normed
fitnesses.

Exercise 13.6 Suppose we perform basic crossover as illustrated in Table 13.3, the parents
are 01101110 and 11010101, and the starting and ending points for crossover are 3 and 7.
Show the two children produced.

Exercise 13.7 Implement the genetic algorithm for finding the value of x that maximizes
f(x) = sin (xπ/256), which is discussed in Section 13.2.2.

Exercise 13.8 Consider the instance of TSP in Figure 13.12. Assume the weights in both
directions on an edge are the same. Find the shortest tour.

Exercise 13.9 Suppose we perform order crossover, the parents are 3 5 2 1 4 6 8 7 9 and
5 3 2 6 9 1 8 7 4, and the starting and ending points for the pick are 4 and 7. Show the two
children produced.

Exercise 13.10 Consider the instance of TSP in Figure 13.12. Apply the nearest neighbor
algorithm starting with each of the vertices. Do any of them yield the shortest tour?

Exercise 13.11 Form the union graph of the two tours shown in Figure 13.13, and apply
the nearest neighborhood algorithm to the resultant graph starting at vertex v5.

Exercise 13.12 Apply the greedy edge algorithm to the instance of TSP in Figure 13.12.
Does it yield a shortest tour?

i
i

i
i

i
i

i
i

Exercises 375

Section 13.3

Exercise 13.13 Consider the two trees in Figure 13.8. Show the new trees that would be
obtained if we exchanged the subtree starting with the “4” in the left tree with the subtree
starting with the “+” in the right tree.

Exercise 13.14 Consider the individual (program) in Figure 13.10. Show the moves pro-
duced by that program when negotiating the Santa Fe trail for the first 10 time steps.

Exercise 13.15 Implement the genetic programming algorithm for the Santa Fe trail dis-
cussed in Section 13.3.2.

i i

Chapter 14

Swarm Intelligence

Many species perform complex tasks when working as a group, even though each member
of the group seemingly exhibits little intelligence. For example, an ant colony is quite
effective at finding the shortest path between its nest and some source of food, while an
individual ant has no ability to accomplish this task. As another example, many of us
have been fascinated watching a flock of birds turn and maneuver as a single unit, while
there is no apparent master plan guiding their behavior. Schools of fish likewise move in
unison. Swarm intelligence is intelligent collective behavior that emerges when some
group of autonomous, non-intelligent entities interact. The entities can be real (e.g., ants)
or artificial (called swarm robots).

We discuss two forms of swarm behavior, namely the ant colony and the flock.

14.1 Ant System

First we discuss how real ants find the shortest path; then we develop artificial ants to solve
the Traveling Salesperson Problem.

i
i

i
i

i
i

i
i

378 Chapter 14 Swarm Intelligence

14.1.1 Real Ant Colonies

Ants can find the shortest path between a food source and their nest [Beckers et al., 1992].
It is well-known that they accomplish this task by depositing pheromones. A pheromone
is a secreted or excreted chemical factor that elicits a response in members of the same
species. Each ant deposits a certain amount of pheromone while walking, and each ant is
attracted to pheromones. This attraction makes it more probable that a given ant will follow
a path rich in pheromone. This localized, individual behavior explains how the ants find the
shortest path between their nest and a food source. Figure 14.1 illustrates this. Figure 14.1
(a) shows a straight line between the nest and the food, and the ants methodically going
back and forth picking up food and depositing it in the nest. Suppose now that we deposit
an obstacle in the path as shown in Figure 14.1 (b). On average, about half the ants will
take the upper path and about half the ants will take the lower path, as depicted in Figure
14.1 (c). Because the upper path is shorter and has the same number of ants traversing it
per unit time, it will accumulate more pheromone. This increase in pheromone will attract
each ant, making it more probable that the ant will take the upper path in its next iteration.
The path will become even richer in pheromone, and eventually all ants will take the upper
path, as shown in Figure 14.1 (d).

14.1.2 Artificial Ants for Solving the TSP

Using the behavior of real ants as a model, we can develop colonies of artificial ants, known
as swarm robots or agents, that solve interesting problems. Regardless of the application,
these colonies have the following features in common:

1. There is no top-down central command guiding the agents’ behavior.

2. Each agent is able to generate some change in the environment.

3. Each agent is able to sense some change in the environment.

Based on a method that appears in [Dorigo and Gambardella, 1997], we will develop a
colony that solves the Travel Salesperson Problem (TSP). See Section 13.2.3 for a description
of this problem. In the application considered here, there is an edge from every vertex to
every other vertex; that is, the graph is complete.

Our colony has the following three properties that are borrowed from real ant colonies:

1. Each agent prefers a path with a higher pheromone level.

2. Pheromone will accumulate at a faster rate on shorter paths.

3. The trails mediate the communication between the agents.

Additionally, our colony has the following properties that do not have a natural coun-
terpart:

1. Each agent k has a working memory Mk that contains the vertices the agent has
already visited. The memory is emptied at the beginning of each new tour, and is
updated each time a vertex is visited.

2. Each agent knows how far away vertices are from the agent’s current vertex.

Given these properties, there are many ways we could develop an algorithm for solving
TSP. The one appearing in [Dorigo and Gambardella, 1997] proceeds as follows:

i
i

i
i

i
i

i
i

14.1 Ant System 379

(a)

Nest Food

(b)

Nest Food

(c)

Nest Food

(d)

Nest Food

Figure 14.1 (a) Ants follow a path between their nest and food. (b) An obstacle appears
on the path. (c) About half the ants follow the upper path and the other half the lower
path. (d) Because pheromones deposit more quickly on the shorter path, eventually all ants
choose this path.

i
i

i
i

i
i

i
i

380 Chapter 14 Swarm Intelligence

1. Deciding how to choose the next vertex:

If agent k is currently at vertex r, the next vertex s is chosen from the vertices not in
Mk according to the following rule:

s =

{
arg max

u/∈Mk

[
τ(r, u)× {η(r, u)}β

]
if p ≤ p0

S otherwise.
(14.1)

The function τ(r, u) is the amount of pheromone currently on edge (r, u); η(r, u) is a
heuristic function, which was chosen to be the inverse of the weight (road length) of
edge (r, u); and β is a parameter that determines the relative importance placed on
pheromone level versus closeness. S is a random variable selected according to the fol-
lowing probability distribution, favoring shorter edges with higher levels of pheromone:

pr,k(s) =

τ(r, s)× {η(r, s)}β∑

u/∈Mk

τ(r, u)× {η(r, u)}β
if s /∈Mk

0 otherwise.

(14.2)

The parameter p0 is in the interval [0,1] and is chosen according to the relative impor-
tance placed on exploitation versus exploration. The value of p is chosen at random
according to the uniform distribution over [0,1]. If p ≤ p0, we perform exploitation
by simply choosing the vertex with the best combination of shortness and pheromone
level (top of Equality 14.1). Otherwise, we perform exploration by randomly choos-
ing a vertex based on a probability distribution that favors shorter paths and higher
pheromone levels (Equality 14.2).

2. Depositing pheromone:

(a) Local pheromone updating:

Every time an edge is chosen by an agent, the pheromone on the edge is updated
according to the following updating formula:

τ(r, s)← (1− α)τ(r, s) + ατ0,

where α and τ0 are parameters. Local updating is motivated by trail evaporation
in real ants.

(b) Global pheromone updating:

When all agents complete a tour, each edge on the shortest tour ST has its
pheromone level updated as follows:

τ(r, s)← (1− α)τ(r, s) + α M τ(r, s),

where

M τ(r, s) =
1

length(ST)
.

Global updating is like reinforcement learning, in that better solutions obtain
more reinforcement.

We start with some number m of ants and perform some number t of iterations, where
in each iteration all agents generate new tours. The starting vertex for each tour is chosen
at random. We call this method the ant colony system (ACS).

Dorigo and Gambardella [1997] compared ACS to methods that used simulated annealing
(SA), elastic net (EN), self organizing map (SOM), and the farthest insertion heuristic (FI).
In these comparisons they use the following values of the parameters:

i
i

i
i

i
i

i
i

14.2 Flocks 381

Table 14.1 Comparison of Average Tour Length for Five 50-Vertex Problem Instances

Problem Instance ACS SA EN SOM FI
1 5.86 5.88 5.98 6.06 6.03
2 6.05 6.01 6.03 6.25 6.28
3 5.57 5.65 5.70 5.83 5.85
4 5.70 5.81 5.86 5.87 5.96
5 6.17 6.33 6.49 6.70 6.71

Note: Results on SA, EN, and SOM are from [Durbin and Willshaw, 1987] and [Potvin
1993]. Results for FL and ACS are averages over 15 trials. The best average tour length is
in bold.

m = 20

t = 1250

α = 0.1

β = 2

p0 = 0.9

τ0 =
1

n× L

L is the length of the tour produced by the nearest neighbor heuristic and n is the number
of vertices.

The results of one of their comparisons appear in Table 14.1. ACS did quite well, having
the shortest average tour length for 4 of the 5 problem instances. Dorigo and Gambardella
[1997] show results of further comparisons involving ACS and other methods.

Dorigo and Gambardella [1997] suggest several ways for improving the algorithm. One
interesting possibility is parallization. Using this method, the same TSP would be solved on
each processor by a smaller number of ants and the best tour found would be exchanged asyn-
chronously among processors [Dorigo et al., 1996]. Another possible improvement would be
to introduce specialized families of ants [Gambardella and Dorigo, 1995].

To apply the technique introduced here to a new problem, it is necessary to identify an
appropriate representation of the problem in the form of a graph searched by many agents,
and an appropriate heuristic that defines the distance between any two nodes on the graph.

14.2 Flocks

While intelligence in ants emerges through the medium of pheromone, birds, fish, and cows
exhibit emergent intelligence without their members sharing any physical medium. Birds
fly in flocks, fish swim in schools, and cows run in herds. The words flock, school, and herd
are used for the different types of species, but the behavior is all the same, namely that the
members of a group move in unison without any apparent central command. For the sake
of focus, we will discuss flocks of birds.

Many of us have been fascinated by the coordinated movements of flocks of birds. The
flock maneuvers as a single unit, changing direction almost instantaneously. Two immediate
questions are (1) Why do they do this? and (2) How do they do this? Hamilton [1971] offered
an evolutionary answer to the first question. This behavior is exhibited primarily in prey

i
i

i
i

i
i

i
i

382 Chapter 14 Swarm Intelligence

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

N

c

Figure 14.2 The attraction of a fish for a school as a function of the number N of fish in
the school. In this example, c = N0.6.

rather than predators. A bird near the edge of the flock is more likely to be caught by a
predator. So a bird has a survival benefit in staying close to the center of the flock.

As to the second question, at one time, some researchers suggested that electromagnetic
communication may be involved. However, current research suggests another mechanism.
Breder [1954] performed experiments in which an isolated fish was separated from the school.
The results showed that the attraction for the school by the isolated fish (as measured by
the fish swimming toward the school) is given by the following formula:

c = kN t,

where c and t are constants and N is the number of fish in the school. In one experiment,
k = 0.355 and t = 0.818. Note that because t < 1, the attraction c increases as N increases;
but for larger N , the effect of adding more fish to the school is less pronounced. This is
illustrated in Figure 14.2 with c = N0.6.

Partridge [1982] conducted experiments providing a physical description of the behavior
of a school of fish. The lateral line in a fish is a sense organ used to detect movement
and vibration in the surrounding water. In Partridge’s experiment, blinded fish with intact
lateral lines swam farther from their neighbors than fish with vision. However, sighted fish
with lateral lines removed swam close to other fish but tended to collide with them. Fish
with both sensory systems disabled did not stay with the school at all. These findings
indicate that a fish uses local observations (vibration in the water) to avoid collisions and
sight (possibly local) to stay with the school.

Based on considerations like these, Reynolds [1987] postulated that there is no leader
or central control; rather, the flock’s movements are determined by each individual bird
(or fish) following simple rules in response to interactions with its neighbors. Using such
rules, Reynolds developed a simulator of bird flocking. We describe Reynold’s rules and
the simulator next.

Reynolds [1987] defines a flock as a group of objects that exhibits generalized aligned,
non-colliding, aggregate motion. A member of the flock is called a bird-oid or simply boid.
A given boid reacts only to other boids in a small region around itself. Figure 14.3 shows
such a region. The region is determined by a parameter r, which is the radius of a circular
neighborhood with center at the boid, and a parameter θ, which is an angle measured from

i
i

i
i

i
i

i
i

14.3 Discussion and Further Reading 383

r

Figure 14.3 A boid’s neighborhood. The parameter r is the radius of its circular neigh-
borhood, and the parameter θ is the angle determining how much of the circle is included
in the neighborhood.

the boid’s direction of flight and which determines how much of the circle is included in the
neighborhood. Boids outside the local neighborhood are ignored.

A boid uses the following three rules (in order of decreasing precedence) to guide its
behavior based on the other boids in its neighborhood.

1. Collision avoidance: Avoid collisions with boids in its neighborhood

2. Velocity matching: Attempt to maintain the same velocity with boids in its neighbor-
hood. Velocity is a vector consisting of both direction and speed

3. Flock centering: Attempt to stay close to boids in its neighborhood

These three rules determine three steering behaviors that determine how a boid ma-
neuvers based on the locations and velocities of boids in its neighborhood. Figure 14.4
shows the behaviors. The arrow shows the direction in which the boid turns when it is
in the given situation. Reynolds [1987] describes the details of how these behaviors are
implemented and interact with each other in his simulator. The simulated flock model also
enables the flock to avoid obstacles and go around them. The simulation can be viewed at
http://www.red3d.com/cwr/boids/.

Another interesting behavior exhibited by flocks of birds is their ability to locate edibles
from hundreds of feet in the air and swoop down to consume them. Heppner and Granander
[1990] and Kennedy and Eberhard [1995] investigated the modeling of this behavior. Further
mathematical models of flocking appear in [Jadbabaie et al., 2003] and [Vicsek et al., 1995].

14.3 Discussion and Further Reading

Kennedy and Eberhart [2001] discuss much of the initial research concerning swarm intel-
ligence. However, further research in this area has proliferated in the past decade. For
example, Campo et al. [2010] applied the pheromone strategy to collective foraging, which
is a task in which a group of robots search for resources and exploit them. Robot forag-
ing can be applied to search and rescue, mining, agriculture, and exploration of unknown
environments. These researchers implement artificial ants that deposit pheromone inside a

http://www.red3d.com/cwr/boids/

i
i

i
i

i
i

i
i

384 Chapter 14 Swarm Intelligence

(a) Collision avoidance: steer to avoid collision with local boids.

(b) Velocity matching: steer toward average direc�on of local boids.

(c) Centering: steer toward average posi�on of local boids.

Figure 14.4 The three local steering behaviors that result in the boids maintaining a
cohesive flock.

i
i

i
i

i
i

i
i

Exercises 385

network of robots. The concentration of pheromone on a given robot allows it to decide
whether it should be part of a particular path, and whether it should stop participating
in path maintenance and switch to another task. Montes de Oca et al. [2011] developed
a technique called incremental social learning to improve performance when the number of
agents is large. In their technique, the population size grows over time. When a new agent
is added to the population, its position is initialized using a “social learning” rule that is bi-
ased toward the best agent. Then the agent goes through a process of “individual learning”
that consists of a local search procedure. Baldassarre et al. [2007] developed swarm robots
that are able to dynamically change their structure according to environmental variability.

The flock model can be applied to many biological systems involving clustering and mi-
gration. Besides schools of fish and flock of birds, it can be applied to phenomena such as
bacterial colony growth [Vicsek et al., 1995]. The model has also been applied to human be-
havior. For example, Latané [1981] developed social impact theory based on experiments
concerning human behavior and groups of people. Such behavior includes various crowd ef-
fects, including how the number of people in a group in a restaurant affects tipping behavior
and how the nervousness of an individual on-stage is a function of the number of people
in the audience. Behavioral finance explains phenomena such as stock market bubbles
and crashes by herding manifested in the collective irrationality of investors [Shiller, 2000];
[Hey and Morone, 2004]. Goldstone and Janssen [2005] provide a computational model of
how individual decisions lead to the emergence of group-level organizations.

EXERCISES

Section 14.1

Exercise 14.1 Explain why all the ants will eventually take the shorter path as illustrated
in Figure 14.1.

Exercise 14.2 Consider the parameter β in Equality 14.1. Do larger values of β place more
importance on pheromone level or closeness?

Exercise 14.3 Consider the parameter p0 in Equality 14.1. Do larger values of p0 place
more importance on exploitation or exploration?

Exercise 14.4 Implement the ant colony system (ACS) discussed in Section 14.1.2. Inves-
tigate ways to improve it.

Section 14.2

Exercise 14.5 Recall from Section 14.2 that the attraction for a school by an isolated fish
is given by the following formula c = kN t, where c and t are constant and N is the number
of fish in the school. Investigate the behavior of this function for t < 1 and for t > 1. When
is the effect of adding another fish less pronounced as N increases, and when is it more
pronounced?

Exercise 14.6 Consider Reynolds’ three rules for guiding the behavior of a boid, which
appear in Section 14.2. For each rule, discuss the behavior of the boid if that rule was not
present and the other two rules were present.

i i

Part IV

Neural Intelligence

i i

Chapter 15

Neural Networks and Deep
Learning

The previous three parts modeled intelligence at either a human cognitive level or at a
population-based level. The intelligence is removed from the physiological processes involved
in intelligent reasoning. In this part, we model the neuronal processes involved when the
brain is ”intelligently” controlling the thoughts and behavior of a life form. The networks
we construct in this fashion are called artificial neural networks. Neural networks have
been used effectively in applications such as image recognition and speech recognition, which
are hard to model with the structured approach used in rule-based systems and Bayesian
networks. In the case of image recognition, for example, they learn to identify images of
cars by being presented with images that have been labeled ”car” and ”no car”. We start
by modeling a single neuron.

15.1 The Perceptron

Figure 15.1 (a) shows a biological neuron, which has dendrites that transmit signals to a
cell body, a cell body that processes the signal, and an axon that sends signals out to other

i
i

i
i

i
i

i
i

390 Chapter 15 Neural Networks and Deep Learning

Figure 15.1 A neuron is in (a); an artficial neuron is in (b).

neurons. The input signals are accumulated in the cell body of the neuron, and if the accu-
mulated signal exceeds a certain threshold, an output signal is generated which is passed on
by the axon. Figure 15.1 (b) show an artificial neuron that mimics this process. The artificial
neuron takes as input a vector (x1, x2, ..., xk), and then applies weights (w0, w1, w2, ..., wk)
to that input yielding a weighted sum:

w0 +
k∑
i=1

wixi.

Next the neuron applies an activation function f to that sum, and outputs the value y of
f . Note that the inputs xi are square nodes to distinguish them from an artificial neuron,
which is a computational unit.

A neural network consists of one to many artificial neurons, which communicate with
each other. The output of one neuron is the input to another neuron. The simplest neural
network is the perceptron, which consists of a single artificial neuron, as shown in Figure
15.1 (b). The activation function for the perceptron is as follows:

f(z) =

{
1 if z > 0

−1 otherwise

Therefore, the complete expression for the output y of the perceptron is as follows:

y =

{
1 if w0 +

∑k
i=1 wixi > 0

−1 otherwise
(15.1)

The perceptron is a binary classifier. It returns 1 if the activation function exceeds 0;
otherwise it returns -1.

i
i

i
i

i
i

i
i

15.1 The Perceptron 391

Figure 15.2 The line −3− 4x1 + 5x2 = 0 is in (a). This line linearly separates the data in
(b), and approximately linearly separates the data in (c). It does not approximately linearly
separate the data in (d).

Let’s look at the case where the input is a two-dimensional vector (x1, x2). Suppose the
weighted sum in our perceptron is as follows:

w0 + w1x1 + w2x2 = −3− 4x1 + 5x2. (15.2)

Figure 15.2 (a) plots the line −3 − 4x1 + 5x2 = 0. If we color 2-dimensional points gray
or black, the set of gray points is linearly separable from the set of black points if there
exists at least one line in the plane with all the gray points on one side of the line and all
the black points on the other side. This definition extends readily to higher-dimensional
data. The points in Figure 15.2 (b) are linearly separable by the line −3 − 4x1 + 5x2 = 0.
So, the perceptron with the weights in Equality 15.2 maps all the gray points to y = 1,
and all the black points to y = −1. This perceptron is a perfect binary classifier for these
data. If we have the data in Figure 15.2 (c), this perceptron is a pretty good classifier, as
it only misclassifies two cases. It is a very poor classifier for the data in Figure 15.2 (d).
The gray and black points in that figure are not approximately linearly separable; so no
perceptron would be a good classifier for this data. The perceptron is a linear binary
classifier because it uses a linear function to classify an instance.

15.1.1 Learning the Weights for a Perceptron

When learning a perceptron for binary classification, our goal is to determine weights deter-
mining a line that as close as possible linearly separates the two classes. Next we develop a

i
i

i
i

i
i

i
i

392 Chapter 15 Neural Networks and Deep Learning

gradient descent algorithm for learning these weights (See Section 5.3.2 for an introduction
to gradient descent.) If we have a data item (x1, x2, ..., xk, y), our loss function is

Loss(y, ŷ) = (ŷ − y)(w0 +
k∑
i=1

wixi),

where ŷ is the estimate of y using Equation 15.1. The idea behind this loss function is
that if ŷ = y there is no loss. If ŷ = 1 and y = −1, then w0 +

∑k
i=1 wixi > 1, and the

loss is 2
(
w0 +

∑k
i=1 wixi

)
. This loss is a measure of how far off we are from obtaining a

value < 0, which would have given a correct answer. Similarly, if ŷ = −1 and y = 1, then

w0 +
∑k
i=1 wixi < 1, and the loss is again 2

(
w0 +

∑k
i=1 wixi

)
. The cost function follows:

Cost([y1, ŷ1], ..., [yn, ŷn]) =
n∑
j=1

Loss(yj , ŷj) =
n∑
j=1

(
(ŷj − yj)(w0 +

k∑
i=1

wix
j
i)

)
. (15.3)

Note that xji denotes the ith vector element in the jth data item. This is different from
the notation used in Section 5.3. The partial derivatives of the cost function are as follows:

∂
(∑n

j=1(ŷj − yj)(w0 +
∑k
i=1 wix

j
i)
)

∂w0
=

n∑
j=1

(ŷj − yj)

∂
∑n
j=1

(
(ŷj − yj)(w0 +

∑k
i=1 wix

j
i)
)

∂wm
=

n∑
j=1

(ŷj − yj)xjm.

When Rosenblatt [1958] developed the perceptron and the algorithm we are presenting,
he updated based on each item in sequence as in stochastic gradient descent (Section 5.3.4).
We show that version of the algorithm next.

Algorithm 15.1 Gradient Descent Perceptron

Input: Set of real predictor data and binary outcome data: {(x1
1x

1
2, ...x

1
k, y

1),
(x2

1x
2
2, ...x

2
k, y

2)..., (xn1x
n
2 , ...x

n
k , y

n)}.

Output: Weights w0, w1, ..., wk that minimize the cost function in Equality 15.3.

Function Minimizing V alues;
for i = 0 to k

wi = arbitrary value;
endfor
λ = learning rate;
repeat number iterations times

for j = 1 to n

y =
{ 1 if w0+

∑k
i=1 wix

j
i>0

−1 otherwise

w0 = w0 − λ(y − yj);
for m = 1 to k

wm = wm − λ(y − yj)xjm;
endfor

endfor
endrepeat

i
i

i
i

i
i

i
i

15.1 The Perceptron 393

Example 15.1 Suppose we set λ = 0, 1, and we have the following data:

x1 x2 y
1 2 1
3 4 -1

The algorithm through 2 iterations of the repeat loop follows:

// Initialize weights to arbitrary values.

w0 = 1;w1 = 1, w2 = 1;

// First iteration of repeat loop.

// j = 1 in the for−j loop.

w0 + w1x
1
1 + w2x

1
2 = 1 + 1(1) + 1(2) = 4 > 0;

y = 1;

w0 = w0 − λ(y − y1) = 1− (0.1)(1− 1) = 1;

w1 = w1 − λ(y − y1)x1
1 = 1− (0.1)(1− 1)1 = 1;

w2 = w2 − λ(y − y1)x1
2 = 1− (0.1)(1− 1)2 = 1;

// j = 2 in the for−j loop.

w0 + w1x
2
1 + w2x

2
2 = 1 + 1(3) + 1(4) = 8 > 0;

y = 1;

w0 = w0 − λ(y − y1) = 1− (0.1)(1− (−1)) = 0.8;

w1 = w1 − λ(y − y1)x1
1 = 1− (0.1)(1− (−1))3 = 0.4;

w2 = w2 − λ(y − y1)x1
2 = 1− (0.1)(1− (−1))4 = 0.2;

// Second iteration of repeat loop.

// j = 1 in the for−j loop.

w0 + w1x
1
1 + w2x

1
2 = 0.8 + 0.4(1) + 0.2(2) = 1. 6 > 0;

y = 1;

w0 = w0 − λ(y − y1) = 0.8− (0.1)(1− 1) = 0.8;

w1 = w1 − λ(y − y1)x1
1 = 0.4− (0.1)(1− 1)1 = 0.4;

w2 = w2 − λ(y − y1)x1
2 = 0.2− (0.1)(1− 1)2 = 0.2;

// j = 2 in the for−j loop.

w0 + w1x
2
1 + w2x

2
2 = 0.8 + 0.4(3) + 0.2(4) = 2. 8 > 0;

y = 1;

w0 = w0 − λ(y − y1) = 0.8− (0.1)(1− (−1)) = 0.6;

w1 = w1 − λ(y − y1)x1
1 = 0.4− (0.1)(1− (−1))3 = −0.2;

w2 = w2 − λ(y − y1)x1
2 = 0.2− (0.1)(1− (−1))4 = −0.6; �

i
i

i
i

i
i

i
i

394 Chapter 15 Neural Networks and Deep Learning

Table 15.1 SAT Scores, Parental Income, and Graduation Status for 12 Students

SAT (100) Income ($10,000) Graduate
4 18 no
6 7 no
8 4 no
10 6 no
12 2 no
10 10 no
6 6 yes
7 20 yes
8 16 yes
12 16 yes
14 7 yes
16 4 yes

15.1.2 The Perceptron and Logistic Regression

The perceptron is similar to logistic regression (See Section 5.3.3) in that they both map
continuous predictors to a binary outcome. The difference is that the perceptron determin-
istically reports that Y = 1 or Y = −1, while logistic regression reports the probability that
Y = 1. Recall this logistic regression computes this probability as follows:

P (Y = 1|x) =
exp(b0 +

∑k
i=1 bixi)

1 + exp(b0 +
∑k
i=1 bixi)

P (Y = −1|x) =
1

1 + exp(
∑k
i=1 bixi)

.

We can use the logistic regression equation as a binary classifier if we say Y = 1 if and
only if P (Y = 1) > P (Y = −1). The following sequence of steps shows that if we do this,
we have a linear binary classifier.

P (Y = 1|x) = P (Y = −1|x)

exp(b0 +
∑k
i=1 bixi)

1 + exp(b0 +
∑k
i=1 bixi)

=
1

1 + exp(
∑k
i=1 bixi)

exp

(
b0 +

∑k

i=1
bixi

)
= 1

ln

(
exp(b0 +

∑k

i=1
bixi)

)
= 0

b0 +
∑k

i=1
bixi = 0.

So, we set Y = 1 if and only if b0 +
∑k
i=1 bixi > 0.

Example 15.2 Suppose we suspect that SAT scores and parental income have an affect on
whether a student graduates college, and we obtain the data in Table 15.1. These data are
plotted in Figure 15.3 (a). If we learn a logistic regression model from these data (using an
algorithm such as the one outlined in Section 5.3.3), we obtain

P (Graduate = yes|SAT, Income) =
exp(−6.24 + 0.439SAT + 0.222Income)

1 + exp(−6.24 + 0.439SAT + 0.222Income)
,

i
i

i
i

i
i

i
i

15.2 Feedforward Neural Networks 395

Figure 15.3 The plot in (a) shows individuals who graduated college as gray points and
individuals who did not graduate college as black points. The plot in (b) shows the same
individuals and includes the line 6.14 + 0.439SAT + 0.222Income.

and so the line we obtain for a linear classifier is

−6.24 + 0.439SAT + 0.222Income = 0.

That line is plotted with the data in Figure 15.3 (b). Note that the line does not perfectly
linearly separate the data, and two points are misclassified. These data are not linearly
separable.

It is left as an exercise to implement Algorithm 15.1, apply it to the data in Table 15.1,
and compare the results to those obtained with logistic regression. �

15.2 Feedforward Neural Networks

If we want to classify the objects in Figure 15.2 (d), we need to go beyond a simple per-
ceptron. Next we introduce more complex networks, which can classify objects that are not
linearly separable. We start with a simple example, the XOR function.

15.2.1 Modeling XOR

The domain of the XOR function is {(0, 0), (0, 1)(1, 0), (1, 1)}. The XOR mapping is then
as follows:

XOR(0, 0) = 0

XOR(0, 1) = 1

XOR(1, 0) = 1

XOR(1, 1) = 0.

Figure 15.4 plots the domain of the XOR function, and shows points mapping to 0 as
black points and points mapping to 1 as gray points. Clearly, the black and gray points
are not linearly separable. So, no perceptron could model the XOR function. However, the
more complex network in Figure 15.5 does model it. That network is a 2-layer neural
network because there are two layers of artificial neurons. The first layer, containing the
nodes h1 and h2, is called a hidden layer because it represents neither input nor output. The
second layer contains the single output node y. The perceptron only has this layer. Note

i
i

i
i

i
i

i
i

396 Chapter 15 Neural Networks and Deep Learning

Figure 15.4 The XOR function. The black points map to 0, and the gray points map to 1.

Figure 15.5 A neural network modeling the XOR function.

i
i

i
i

i
i

i
i

15.2 Feedforward Neural Networks 397

Figure 15.6 The original x-space is in (a), and the transformed h-space is in (b).

that the activation function in the hidden node h2 in Figure 15.5 is max(0, z); this function
is called the rectified linear activation function.

Let’s show that the network in Figure 15.5 does indeed model the XOR function:

(x1, x2) = (0, 0)

h1 = 0 + 0 = 0

h2 = max(0,−1 + 0 + 0) = 0

y = 0− 2(0) = 0

(x1, x2) = (0, 1)

h1 = 0 + 1 = 1

h2 = max(0,−1 + 0 + 1) = 0

y = 1− 2(0) = 1

(x1, x2) = (1, 0)

h1 = 1 + 0 = 1

h2 = max(0,−1 + 1 + 0) = 0

y = 1− 2(0) = 1

(x1, x2) = (1, 1)

h1 = 1 + 1 = 2

h2 = max(0,−1 + 1 + 1) = 1

y = 2− 2(1) = 0.

The ”trick” in this network is that h1 and h2 together map (0,0) to (0,0), (0,1) to (1,0),
(1,0) to (1,0) and (1,1) to (2,1). So our black points are now (0,0) and (2,1), while our single
gray point is (1,0). The data is now linearly separable. Figure 15.6 shows the transformation
from the x-space to the h-space.

i
i

i
i

i
i

i
i

398 Chapter 15 Neural Networks and Deep Learning

Figure 15.7 Class C1 consists of the shaded area, and class C2 consists of the white area.
The notation 100, for example, means that the region lies on the plus side of line h11, on
the minus side of line h12, and on the minus side of line h13.

15.2.2 Example with Two Hidden Layers

Suppose we are classifying points in the plane, and all points in the grey area in Figure
15.7 are in class C1, while all points in the white area are in class C2. This is a difficult
classification problem because the regions that comprise class C1 are not even adjacent.
The neural network in Figure 15.8, which has two hidden layers, correctly accomplishes this
classification with appropriate weights and activation functions. Next, we show how this is
done.

The lines h1, h2, and h3 in Figure 15.7 separate the plane into 7 regions. The notation
+/− in Figure 15.7 indicates the region is on the + side of the given line or on the − side.
We assign the region value 1 if it is on the + side of the line and value 0 if it is on the
− side. Region 100 is therefore labeled as such because it is on the + side of line h11, on
the − side of line h12, and on the − side of line h13. The other regions are labeled in a
similar fashion. We can create a hidden node h11 with weights representing line h11. Then
we use an activation function that returns 0 if (x1, x2) is on the − side of line h11 and 1
otherwise. We create hidden nodes h12 and h13 in a similar fashion. Table 15.2 shows the
values output by each of the nodes h11, h12, and h13 when (x1, x2) resides in each of the 7
regions in Figure 15.7 (note that 110 does not determine a region). So, the regions map
to the 7 of the corners of the unit cube in 3-space. The two points that represent class C1

are (0,0,0) and (1,1,1). We can linearly separate point 0,0,0) from the other 6 points with
a plane in 3-space. So we create a hidden node h21 that does this. We use an activation
function that returns 1 for point (0,0,0) and 0 for all other points on the cube. Similarly,
we create a hidden node h22 that outputs 1 for point (1,1,1) and 0 for all other points on
the cube. Table 15.2 shows these values. So, the output of these two hidden nodes is (1,0)

i
i

i
i

i
i

i
i

15.2 Feedforward Neural Networks 399

Figure 15.8 A neural network that correctly classifies points in classes C1 and C2 in Figure
15.7.

Table 15.2 Values of the Nodes in the Neural Network in Figure 15.7 for the Input Tuple
Located in Each of the Regions in Figure 15.6

Region Class h11 h12 h13 h21 h22 y
000 C1 0 0 0 1 0 1
001 C2 0 0 1 0 0 0
010 C2 0 1 0 0 0 0
011 C2 0 1 1 0 0 0
100 C2 1 0 0 0 0 0
101 C2 1 0 1 0 0 0
110 − − − − − − −
111 C1 1 1 1 0 1 1

i
i

i
i

i
i

i
i

400 Chapter 15 Neural Networks and Deep Learning

Figure 15.9 The points in region 000 map to (0,1), the points in region 111 map to (1,0),
and all other points map to 0,0).

if (x1, x2) is in region 000 and (0,1) if (x1, x2) is in region 111. It is (0,0) if (x1, x2) is in
any other region. These three points are shown in Figure 15.9. Next, we create weights for
our output node y that yield a line that separates (1,0) and (0,1) from (0,0). Such a line
is shown in Figure 15.9. We then use an activation function that returns 1 if the point lies
above that line and 0 otherwise. In this way, all values of (x1, x2) in class C1 map to 1 and
all values of (x1, x2) in class C2 map to 0.

Example 15.3 Suppose the three lines determining the regions in Figure 15.7 are as follows:

h11 : 2− x1 − x2 = 0

h12 : 0.5− x2 = 0

h13 : x1 − x2 = 0.

These three lines are plotted in Figure 15.10. Given these lines, the activation functions for
hidden nodes h11, h12, and h13 are as follows:

h11 =

{
1 if 2− x1 − x2 > 0

0 otherwise

h12 =

{
1 if 0.5− x2 < 0

0 otherwise

h12 =

{
1 if x1 − x2 < 0

0 otherwise
.

Hidden node h21 must provide a plane that linearly separates (0, 0, 0) from all other points
on the unit cube. The following is one such plane:

h11 + h12 + h13 = 0.5.

i
i

i
i

i
i

i
i

15.2 Feedforward Neural Networks 401

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

x1

x2

Figure 15.10 The three lines determining the regions in Figure 15.7 for Example 15.3.

So, we can make the activation function for hidden node h21 as follows:

h21 =

{
1 if h11 + h12 + h13 − 0.5 < 0

0 otherwise

Hidden node h22 must provide a plane that linearly separates (1, 1, 1) from all other points
on the unit cube. The following is one such plane:

h11 + h12 + h13 = 2.5.

So, we can make the activation function for hidden node h22 as follows:

h22 =

{
1 if h11 + h12 + h13 − 2.5 > 0

0 otherwise
.

Finally node y must provide a line that linearly separates (0, 1) and (1, 0) from (1, 1). The
following is one such line:

h21 + h22 = 0.5.

So, we can make the activation function for node y as follows:

y =

{
1 if h21 + h22 − 0.5 > 0

0 otherwise
.

�

15.2.3 Structure of a Feedforward Neural Network

Having shown a neural network with one hidden layer (Figure 15.5) and a neural network
with two hidden layers (Figure 15.8), we now present the general structure of a feedforward
neural network. This structure appears in Figure 15.11. On the far left is the input, which
consists of x1, x2, ..., xk. Next there are 0 or more hidden layers. Then on the far right is the
output layer, which consists of 1 or more nodes y1, y2, ...ym. Each hidden layer can contain
a different number of nodes.

i
i

i
i

i
i

i
i

402 Chapter 15 Neural Networks and Deep Learning

Figure 15.11 The general structure of a feedforward neural network.

In Sections 15.2.1 and 15.2.2 we constructed the neural network, and assigned values to
the weights to achieve our desired results. Typically, we do not do this but rather learn the
weights using a gradient descent algorithm similar to, but more complex than, the Algorithm
15.1 for the perceptron. For example, we could first construct the network in Figure 15.8
and then provide the form of the activation functions for the hidden nodes and the output
node (discussed in the next section). Finally, we provide many data items to the algorithm,
each of which has value (x1, x2, ..., xk, C), where C is the class to which point (x1, x2, ..., xk)
belongs. The algorithm then learns weights such that the resultant network can classify new
points.

A difficulty is that we don’t know which network structure will work for a given problem
beforehand. For example, without a detailed analysis of the problem in Section 15.2.2, we
would not know to assign two hidden layers where the first layer contains 3 nodes, and
the second layer contains 2 nodes. So, in general we experiment with different network
configurations, and using a technique such as cross validation (Section 5.2.3), we find the
configuration that gives the best results. There are various strategies for configuring the
network. One strategy is to make the number of hidden nodes about equal to the number
of input variables, and assign various layer and node per layer configurations. However, this
will probably result in over-fitting if the dataset size is small compared to the input size.
Another strategy is to make the number of hidden nodes no greater than the number of
data items, and again try various layer and node per layer configurations.

In summary, to develop a neural network application we need data on the input vari-
able(s) and output variable(s). We then construct a network with some configuration of
hidden node layers and an output layer. The final step is to specify the activation functions,
which we discuss next. Note that, if implementing the neural network from scratch, we
would also need to program the gradient descent algorithm that finds the optimal values
of the weights. However, henceforth we will assume that we are using a neural network
package which has these algorithms implemented. We will present such packages in the final
section.

i
i

i
i

i
i

i
i

15.3 Activation Functions 403

15.3 Activation Functions

Next we discuss the activation functions that are ordinarily used in neural networks.

15.3.1 Output Nodes

We have different activation functions for the output nodes depending on the task. If we
are classifying data into one of two different classes, we need output nodes that represent
binary classification. If we are classifying data in one of three or more possible classes, we
need output nodes that represent multinomial classification. If our output is a continuous
distribution such as the normal distribution, we need nodes that represent properties of that
distribution. We discuss each in turn.

15.3.1.1 Binary Classification

In binary classification we want to classify or predict a variable that has two possible values.
For example, we may want to predict whether a patient’s cancer will metastasize based on
features of the patient’s cancer. In most such cases we do not want the system to simply
say ”yes” or ”no”. Rather we want to know, for example, the probability of the cancer
metastasizing. So rather than using the discrete activation function that was used in the
perceptron, we ordinarily use the sigmoid function, which is also used in logistic regression
(Section 5.3.3). So, assuming the single output node y has the vector of hidden nodes h as
parents, the sigmoid activation function for a binary outcome is

f(h) =
exp(w0 +

∑
wihi)

1 + exp(w0 +
∑
wihi)

, (15.4)

which yields P (Y = 1|h).

Example 15.4 Suppose our output function is the sigmoid function, and

w0 = 2, w1 = −4, w2 = −3, w3 = 5.

Suppose further that for a particular input

h1 = 6, h2 = 7, h3 = 9.

Then

f(h) =
exp(w0 + w1 × h1 + w2 × h2 + w3 × h3)

1 + exp(w0 + w1 × h1 + w2 × h2 + w3 × h3)

=
exp(2− 4× 6− 3× 7 + 5× 9)

1 + exp(2− 4× 6− 3× 7 + 5× 9)

= 0.881.

So,

P (Y = 1|h) = 0.881.

�

i
i

i
i

i
i

i
i

404 Chapter 15 Neural Networks and Deep Learning

Figure 15.12 The output layer for classifying a variable with m values using the softmax
function.

15.3.1.2 Multinomial Classification

In multinomial classification we want to classify or predict a variable that has m possible
values. An important example, in which neural networks are often applied, is image recog-
nition. For example, we may have a handwritten symbol of one of the digits 0-9, and our
goal is to classify the symbol as the digit intended by the writer. To do multinomial classi-
fication, we use an extension of the sigmoid function called the softmax function. When
using this function, we develop one output node for each of the m possible outcomes, and
we assign the following activation function to the kth output node:

fk(h) =
exp(wk0 +

∑
wkihi)∑m

j=1 exp(wj0 +
∑
wjihi)

.

In this way, the kth output node provides P (Y = k|h). Figure 15.12 shows the output layer
for classifying a variable with m values using the softmax function.

Example 15.5 Suppose our output function is the softmax function, we have 3 outputs,
y1, y2, and y3, and

w10 = 2, w11 = −4, w12 = 3

w20 = 1, w21 = 9, w22 = −3

w30 = 10, w31 = 7, w32 = −4.

Suppose further that for a particular input

h1 = 2, h2 = 4.

Then
w10 + w11h1 + w12h2 = 2− 4× 2 + 3× 4 = 6

w20 + w21h1 + w22h2 = 1 + 9× 2− 3× 4 = 7

w30 + w31h1 + w32h2 = 10 + 7× 2− 4× 4 = 8.

i
i

i
i

i
i

i
i

15.3 Activation Functions 405

f1(h) =
exp(w10 +

∑
w1ihi)∑3

j=1 exp(wj0 +
∑
wjihi)

=
exp(6)

exp(6) + exp(7) + exp(8)
= 0.090

f2(h) =
exp(w20 +

∑
w2ihi)∑3

j=1 exp(wj0 +
∑
wjihi)

=
exp(7)

exp(6) + exp(7) + exp(8)
= 0.245

f3(h) =
exp(w30 +

∑
w3ihi)∑3

j=1 exp(wj0 +
∑
wjihi)

=
exp(8)

exp(6) + exp(7) + exp(8)
= 0.665.

So,

P (Y = 1|h) = 0.090

P (Y = 2|h) = 0.245

P (Y = 3|h) = 0.665.

�

15.3.1.3 Normal Output Distributions

Instead of modeling that the output can only have one of m values (discrete), we can assume
it is normally distributed. We have then that

ρ(y|x) = NormalDen(y;µ, σ2),

where x is the input vector. For example, we may want to predict a normal distribution
of systolic blood pressure based on a patient’s features. In this case, we can have a single
output node, where its value is the mean of the normal distribution. So, the activation
function is simply the linear activation function:

µ = f(h) = w0 +
∑

wihi.

Example 15.6 Suppose our output function is the mean of a normal distribution, and

w0 = 2, w1 = −4, w2 = −3, w3 = 5.

Suppose further that for a particular input

h1 = 3, h2 = 7, h3 = 8.

Then the mean of the output normal distribution is as follows:

µ = f(h) = w0 + w1 × h1 + w2 × h2 + w3 × h3

= 2− 4× 3− 3× 7 + 5× 8

= 9.

�

15.3.2 Hidden Nodes

The most popular activation function for hidden nodes (especially in applications involving
image recognition) is the rectified linear activation function, which we have already
used. That function is as follows:

f(h) = max(0, w0 +
∑

wihi).

Notice that this activation function is similar to the linear activation function just discussed,
except that it returns 0 when the linear combination is negative.

i
i

i
i

i
i

i
i

406 Chapter 15 Neural Networks and Deep Learning

Example 15.7 Suppose our activation function is the rectified linear function, and

w0 = −5, w1 = −4, w2 = −3, w3 = 5.

Suppose further that for a particular input

h1 = 8, h2 = 7, h3 = 9.

Then

f(h) = max(0, w0 + w1 × h1 + w2 × h2 + w3 × h3)

= max(0,−5− 4× 8− 3× 7 + 5× 9)

= max(0,−13)

= 0.

�

Another activation function used for hidden nodes is the maxout activation func-
tion. For this function, we have r weight vectors, where r is a parameter, and we take the
maximum of the weighted sums. That is, we have

z1 = w10 +
∑

w1ihi

z2 = w20 +
∑

w2ihi

...

zr = wr0 +
∑

wrihi,

and
f(h) = max(z1, z2, ..., zr).

Example 15.8 Suppose our activation function is the maxout function, r = 3, and

w10 = 2, w11 = −4, w12 = 3

w20 = 1, w21 = 9, w22 = −3

w30 = 10, w31 = 7, w32 = −4.

Suppose further that for a particular input

h1 = 2, h2 = 4.

Then
z1 = w10 + w11h1 + w12h2 = 2− 4× 2 + 3× 4 = 6

z2 = w20 + w12h1 + w22h2 = 1 + 9× 2− 3× 4 = 7

z3 = w30 + w31h1 + w32h2 = 10 + 7× 2− 4× 4 = 8.

f(h) = max(z1, z2, z3) = max(6, 7, 8) = 8.

�

The sigmoid activation function (Equation 15.4) can also be used as the activation func-
tion for hidden notes. A related function, which is also used, is the hyperbolic tangent
activation function, which is as follows:

f(h) = tanh(w0 +
∑

wihi).

i
i

i
i

i
i

i
i

15.4 Application to Image Recognition 407

Figure 15.13 Examples of the handwritten digits in the MNIST dataset.

15.4 Application to Image Recognition

The MNIST dataset (http://yann.lecun.com/exdb/mnist/) is an academic dataset used to
evaluate the performance of classification algorithms. The dataset consists of 60,000 training
images and 10,000 test images. Each image is one of the digits 0-9, which is handwritten.
It is a standardized 28 by 28 pixel greyscale image. So, there are 784 pixels in all. Figure
15.13 shows examples of the digits in the dataset.

Candel et al. [2015] developed a neural network to solve the problem of classifying
images in the test dataset by learning a system from the training dataset. The network
has 784 inputs (one for each pixel), 10 outputs (one for each digit) and three hidden layers,
with each layer containing 200 hidden nodes. Each hidden node uses the rectified linear
activation function, and the output nodes use the softmax function. Figure 15.14 depicts
the network.

The neural network had a classification error rate of 0.0083, which ties the best error
rate previously achieved by Microsoft.

15.5 Discussion and Further Reading

The title of this chapter is “Neural Networks and Deep Learning.” Yet we never mentioned
”deep learning” in the text. As mentioned in Section 1.1.2, in the 1940s foundational
efforts at AI involved modeling the neurons in the brain, which resulted in the field of
neural networks [Hebb, 1949]. Once the logical approach to AI became dominant in the
1950s, neural networks fell from popularity. However, new algorithms for training neural
networks and dramatically increased computer processing speed resulted in a re-emergence
of the use of neural nets in the field called deep learning [Goodfellow et al., 2016]. Deep
learning neural network architectures differ from older neural networks in that they
often have more hidden layers. Furthermore, deep learning networks can be trained using
both unsupervised and supervised learning. We presented only the supervised learning
approach. Convolutional neural networks are ones whose architectures make the explicit
assumption that the inputs are images, and therefore encode specific properties of images.
Recurrent neural networks are a class of neural nets that feed their state at the previous
time step into the current time step. They are applied, for example, to automatic text
generation (discussed below).

http://yann.lecun.com/exdb/mnist/

i
i

i
i

i
i

i
i

408 Chapter 15 Neural Networks and Deep Learning

Figure 15.14 The neural network used to classify digits in the MNIST dataset.

This has only been a brief introduction to the basics of neural networks. For a more thor-
ough coverage, including a discussion of the gradient descent algorithms used to learn neural
network parameters, you are referred to [Goodfellow et al., 2016] and [Theodoridis, 2015].
You can download software that implements neural networks. Two such products are H20
(https://www.h2o.ai/) and tenserflow (https://www.tensorflow.org/).

Deep learning has been used to solve a variety of problems, which were difficult with
other approaches. We close by listing some specific applications.

1. Object detection and classification in a photograph [Krizhevsky et al., 2012]. This
problem involves classifying objects in a photograph as one of a set of previously
known objects.

2. Adding color to black and white photographs [Zang et al., 2016]. This problem con-
cerns adding color to black and white photographs.

3. Automatic image caption generation [Karpathy and Fei-Fei, 2015]. This task concerns
generating a caption that describes the contents of an image.

4. Adding sound to silent videos [Owens et al., 2016]. This problem concerns synthesiz-
ing sounds that best match what is happening in a scene in a video.

5. Automatic language translation [Sutskever et al., 2014]. This task involves translat-
ing a word, phrase, or sentence from one language to another language.

6. Automatic handwriting generation [Graves, 2014]. This problem involves generating
new handwriting for a given word or phrase based on a set of handwriting examples.

7. Automatic text generation [Sutskever et al., 2011]. This problem involves using a large
amount of text to learn a model that can generate a new word, phrase, or sentence
based on a partial word or text.

https://www.h2o.ai/
https://www.tensorflow.org/

i
i

i
i

i
i

i
i

Exercises 409

8. Automatic game playing [Mnih et al., 2015]. This problem concerns learning how to
play a computer game based on the pixels on the screen.

When modeling a problem using a neural network, the model is a black box in the sense
that the structure and parameters in the layers do not provide us with a model of reality,
which we can grasp. Bayesian networks, on the other hand, provide a relationship among
variables, which can often be interpreted as causal. Furthermore, Bayesian networks enable
us to model and understand complex human decisions. So, although both architectures
can be used to model many of the same problems, neural networks have more often been
successfully applied to problems that involve human intelligence which cannot be described
at the cognitive level. These problems include computer vision, image processing, and text
analysis. Bayesian networks, on the other hand, have more often been applied successfully
to problems that involve determining the relationships among related random variables, and
exploiting these relationships to do inference and make decisions. A classic example is a
medical decision support system (See Section 7.7).

EXERCISES

Section 15.1

Exercise 15.1 Does the resultant line in Example 15.1 linearly separate the data? If not,
work through more iterations of the repeat loop until it does.

Exercise 15.2 Suppose we set λ = 0, 2, and we have the following data:

x1 x2 y
2 3 -1
4 5 1

Work through iterations of the repeat loop in Algorithm 15.1 until the resultant line linearly
separates the data.

Exercise 15.3 It was left as an exercise to implement Algorithm 15.1, apply it to the data
in Table 15.1, and compare the results to those obtained with logistic regression. Do this.

i
i

i
i

i
i

i
i

410 Chapter 15 Neural Networks and Deep Learning

Section 15.2

Exercise 15.4 Suppose the three lines determining the regions in Figure 15.7 are as follows:

h11 : 4− 2x1 − x2 = 0

h12 : 1− x1 − x2 = 0

h13 : 3 + 2x1 − x2 = 0.

Plot the three lines and show the regions corresponding to classes C1 and C2. Develop
parameters for the neural network in Figure 15.8 such that the network properly classifies
the points in the classes C1 and C2.

Section 15.3
Exercise 15.5 Suppose our output function is the sigmoid function for binary output and

w0 = 1, w1 = −4, w2 = −5, w3 = 4.

Suppose further that for a particular input

h1 = 4, h2 = 5, h3 = 6.

Compute f(h). What is P (Y = 1|h)?

Exercise 15.6 Suppose our output function is the softmax function, and we have 4 outputs,
y1, y2, y3, y4. Suppose further that

w10 = 1, w11 = −3, w12 = 2

w20 = 2, w21 = 7, w22 = −2

w30 = 6, w31 = 5, w32 = −4.

w40 = 5, w41 = −3, w42 = 6.

Suppose further that for a particular input

h1 = 3, h2 = 4, h3 = 5.

Compute f1(h), f2(h), f3(h), f4(h). What is P (Y = i|h) for i = 1, 2, 3, 4?

Exercise 15.7 Suppose our activation function is the rectified linear function, and

w0 = 5, w1 = −4, w2 = 2, w3 = 4, w4 = 8.

Suppose further that for a particular input

h1 = 8, h2 = 7, h3 = 6, h4 = 5.

Compute f(h).

Exercise 15.8 Suppose our activation function is the maxout function, r = 2, and

w10 = 1, w11 = −2, w12 = 6, w13 = 5

w20 = 2, w21 = 8, w22 = −2, w23 = 4.

Suppose further that for a particular input

h1 = 3, h2 = 2, h3 = 5.

Compute f(h).

i
i

i
i

i
i

i
i

Exercises 411

Section 15.4

Exercise 15.9 The Metabric dataset is introduced in [Curtis, et al. 2012]. It provides data
on breast cancer patient features such as tumor size and outcomes such as death. This
dataset can be obtained at https://www.synapse.org/#!Synapse:syn1688369/wiki/27311.
Gain access to the dataset. Then download one of the neural network packages discussed in
Section 15.5. Divide the dataset into a training dataset containing 2/3 of the data, and a
test dataset containing 1/3 of the data. Apply various parameter settings (e.g., number of
hidden layers and number of hidden nodes per layer) to the training set. For each setting do
a 5-fold cross validation analysis, where the goal is to classify/predict whether the patient
dies. Determine the Area Under an ROC Curve (AUROC) for each of the settings, and
apply the settings with the best AUROC to the test data. Determine the AUROC for the
test data.

A naive Bayesian network is a network in which there is one root, and all other nodes
are children of the root. There are no edges among the children. Naive Bayesian network are
used for discrete classification by making the target the root, and the predictors the children.
XLSTAT includes a naive Bayesian network module. Free naive Bayesian network software
is available at various sites including http://www.kdnuggets.com/software/bayesian.html.
Download a naive Bayesian network software package, and do the same study as outlined
above using this package. Vary whatever parameters are available in the software, and do the
5-fold cross validation analysis for each parameter setting. Compare the AUROCs obtained
by the neural network method and the naive Bayesian network method when applied to the
test data.

Exercise 15.10 As discussed in Section 15.4, the MNIST dataset is an academic dataset
used to evaluate the performance of classification algorithms. The dataset consists of 60,000
training images and 10,000 test images. Each image is one of the digits 0-9, which is
handwritten. It is a standardized 28 by 28 pixel greyscale image. So, there are 784 pixels in
all. Download this dataset. Then download one of the neural network packages discussed in
Section 15.5. Apply various parameter settings (e.g., number of hidden layers and number
of hidden nodes per layer) to the training set. For each setting do a 5-fold cross validation
analysis, where the goal is to classify/predict the correct digit. Determine the Area Under
an ROC Curve (AUROC) for each of the settings, and apply the settings with the best
AUROC to the test data. Determine the AUROC for the test data.

Than apply a naive Bayesian network to the dataset. Again use various parameter
settings and 5-fold cross validation on the training dataset, and apply the best parameter
values to the test dataset. Compare the AUROCs obtained by the neural network method
and the naive Bayesian network method when applied to the test dataset.

https://www.synapse.org/#!Synapse:syn1688369/wiki/27311
http://www.kdnuggets.com/software/bayesian.html

i i

Part V

Language Understanding

i i

Chapter 16

Natural Language
Understanding

You may have had the experience of calling a utility or credit card company with the hope
of talking to an operator. Sometimes this scenario plays out as follows. When an automated
message asks you what you would like to do, you answer, “Talk to an operator.” Then after
being led in circles for quite a while, the system hangs up on you. However, if things worked
properly, the system would “understand” your query and take the action of routing you to
an operator. This chapter concerns the development of algorithms that accomplish such
tasks.

We do not pursue the question of what it means to understand language or how humans
have come to understand language. You are referred to a text such as [Pinker, 2007] for
a discussion of these matters. Rather, we take a pragmatic, operational approach. We
assume that we have some knowledge base concerning known facts about the domain of
discourse. For example, if the domain of discourse is the blocks world in Section 4.2.2, then

i
i

i
i

i
i

i
i

416 Chapter 16 Natural Language Understanding

Knowledge

Base
Concept

Contextual

Interpreter

Seman c

Interpreter

Parse

Tree
Parser

Declar-

a ve

Sentence

Knowledge

Base
Query

Contextual

Interpreter

Seman c

Interpreter

Parse

Tree
ParserQues on

Answer or

Ac on

(a) Adding a sentence to a knowledge base.

(b) Asking a ques on of a knowledge base.

Figure 16.1 Steps in adding a sentence to a knowedge base and in asking a question of a
knowledge base.

the knowledge base might contain the fact on(a,b), which means block a is on block b. We
need to make the knowledge base understand our sentences in the sense that a declarative
sentence can be interpreted as a concept that can be added to the knowledge base, and a
question can be converted to a query that can be presented to the knowledge base, which
can then be answered. For example, in the blocks world if you tell the system, “The block
labeled c is on the table,” the system should understand this sentence and add on(c,table)
to the knowledge base. If you ask the system, “What block is on block b,” the system
should understand this question and answer a if on(a,b) is in the knowledge base. In the
credit card domain, if you ask, “What is the balance on my account,” the system should
understand this query, look up your balance, and report it to you. The “answer” can be an
action. For example, if you ask “Can I speak to an operator,” the system should answer by
routing you to an operator.

There are several steps involved in understanding a declarative sentence (or question).
They are as follows:

1. Parsing: This step analyzes the syntactic structure of the sentence by verifying that it
is syntactically correct, and by identifying the linguistic components and relationships
such as subject, verb, and object. Parsing produces a parse tree that represents
these relationships.

2. Semantic Interpretation: This step produces a representation of the meaning of
the sentence from the parse tree. We call this representation a concept.

3. Contextual Interpretation: This step incorporates the concept into the knowledge
base.

The relationships among these steps are shown in Figure 16.1. We discuss each step in
turn.

i
i

i
i

i
i

i
i

16.1 Parsing 417

Table 16.1 A CFG

1 Sentence→ NounPhrase V erbPhrase

2 Sentence→ NounPhrase Aux V erbPhrase

3 Sentence→ Sentence Conj Sentence

4 NounPhrase→ Article Noun

5 NounPhrase→ Adj Noun

6 NounPhrase→ Article Adj Noun

7 NounPhrase→ Noun

8 V erbPhrase→ V erb NounPhrase

9 V erbPhrase→ V erb

10 Noun→ man | monkey | book | right | left | help

11 V erb→ read | reads | love | loves | left | help

12 Article→ a | an | the

13 Adj → fat | big | right

14 Aux → can | may

15 Conj → and | or

16.1 Parsing

The sentence is parsed using a grammar, which is set of rules that determine the com-
position of clauses, phrases, and words in a language. We present our grammars using
Backus-Naur Form (BNF). A BNF grammar consists of the following:

1. A set of terminal symbols. These are the words in the language such as “block”,
“on”, “speak”, and “operator”.

2. A set of nonterminal symbols. These symbols represent linguistic concepts that
categorize phrases in the language such as NounPhrase and V erbPhrase.

3. A start symbol. This symbol represents the entire string being parsed. For the
English language, it is Sentence.

4. A set of derivation rules. The nonterminal symbol on the left in these rules can be
substituted by the terminal and nonterminal symbols on the right. For example, if we
write “Noun→ block,” then a Noun can be substituted by block.

5. The “|” denotes “or”.

Such a grammar is a context-free grammar (CFG), which means that there may only be
one nonterminal symbol on the left in each rule. Table 16.1 shows a simple CFG grammar.

A grammar is in Chomsky normal form if every rule is of the form A← B C or D ←
word, where A, B, C, and D are nonterminals and “word” is a terminal. The context-free
grammar in Table 16.1 is not in Chomsky normal form because of rules 2, 3, 6 and 10
through 15. It is possible to show that every context-free grammar can be transformed into
a grammar that is in Chomsky normal form.

The terminals are the words in the language, and the set of all of them is called the
lexicon. The grammar in Table 16.1 shows a very small lexicon for illustration. Most

i
i

i
i

i
i

i
i

418 Chapter 16 Natural Language Understanding

grammars we would actually use would have a much larger lexicon. A legal sentence is a
string of symbols that can be derived using a sequence of these rules. A derivation must
start with the start symbol Sentence, perform a sequence of substitutions by applying the
rules, and end up with the sentence being parsed.

Example 16.1 Suppose we want to derive the following sentence:

the monkey reads a book.

The following is a derivation of this sentence using the grammar in Table 16.1.

Rule

Sentence → NounPhrase V erbPhrase 1

→ Article Noun V erbPhrase 3

→ the Noun V erbPhrase 9

→ the monkey V erbPhrase 7

→ the monkey V erb NounPhrase 5

→ the monkey reads NounPhrase 8

→ the monkey reads Article Noun 3

→ the monkey reads a Noun 9

→ the monkey reads a book 7

�

A derivation can be represented by a parse tree. Each non-leaf in the tree contains
the nonterminal symbol on the left of a rule used in the derivation, and each of its children
contains one of the terminal or nonterminal symbols on the right of the rule. Each leaf
contains a terminal symbol. The root of the tree is the start symbol Sentence. Figure 16.2
shows the parse tree corresponding to the derivation just shown.

16.1.1 Recursive Parser

In the derivation just shown, we simply proceeded in sequence successfully applying rules
until we derived the sentence. However, suppose we have the following more complex sen-
tence:

the monkey can read and the man can love.

Using the grammar in Table 16.1, we could try parsing the sentence using Rules 1, 3, 9, 7,
and 5 (as done in Example 16.1) in sequence to arrive at “the monkey V erb NounPhrase.”
However, we would then fail because “can” is not a verb. We could then try Rule 6 instead
of Rule 5 and again fail. At that point, we could go back and apply Rule 2 and eventually
arrive at “the monkey can read.” However, we would not have parsed the entire sentence.
We could then back up again and start with Rule 3, which would finally lead us to a parse
of the entire sentence. This procedure suggests using a backtracking technique for parsing
that can be implemented using recursion. The following is such an algorithm.

Algorithm 16.1 Parse
Input: A phrase to be parsed.
Output: True if the phrase can be parsed and False otherwise.

i
i

i
i

i
i

i
i

16.1 Parsing 419

Sentence

NounPhrase VerbPhrase

Article Noun Verb NounPhrase

Article Noun

the monkey reads a book

Figure 16.2 A parse tree.

Function Parse(level, symbol, phrase);

if symbol is a terminal

if symbol = first word in phrase;

remove first word in phrase from phrase;

return True;

else

return False;

else

success = False;

rule = first rule for symbol;

while rule 6= null and not success

string = right side of rule;

phrasenew = phrase;

symbolnew = first symbol in string;

success = True;

while symbolnew 6= null and success

success = parse(level + 1, symbolnew, phrasenew);

symbolnew = next symbol in string;

endwhile

if level = 1 and phrasenew 6= null

success = False;

rule = next rule for symbol;

endwhile

phrase = phrasenew;

return success;

endelse

The global call to function Parse is as follows:

success = Parse(1, Sentence, phrase);

i
i

i
i

i
i

i
i

420 Chapter 16 Natural Language Understanding

Sentence

NounPhrase VerbPhrase

Noun Verb NounPhrase

Noun

right help left

Sentence

NounPhrase VerbPhrase

Adj Noun Verb

right help left

(a) (b)

Figure 16.3 Two parse trees for the sentence “right help left”.

The value of the variable phrase in the top-level call is the sentence we are parsing. For
example, it would be “the monkey reads the book” if that is the sentence we are parsing.
The purpose of the variable level is to enable us to perform a check in the top-level call as
to whether there are more words in the sentence than the ones arrived at with a successful
parse. Otherwise, a sentence such as “the monkey reads the book man may a love” would
successfully parse. The value of the variable string is the right side of a rule. For example,
if we are applying the rule “Sentence ← NounPhrase V erbPhrase,” the value of string
would be “NounPhrase V erbPhrase.” Using a given rule, we recursively try to parse each
symbol in string until we reach the end of the string, which we denote with the value “null.”
If they all are successfully parsed, the value of success is true. However, it is switched to
false if it is the top-level call and there are more words left to be parsed.

The value of function Parse is true if a successful parse is obtained and false otherwise.
The function does not produce a parse tree. However, it can be readily modified to produce
such a tree as follows. When a successful parse of a symbol is obtained, the function returns
a pointer to a node containing that symbol. The symbol is then made a child of the symbol
at the previous level. The pointer returned in the top-level call points to the root of the
tree. It is left as an exercise to write this modification.

16.1.2 Ambiguity

Consider the following sentence, which might appear as a headline in the newspaper:

right help left.

This sentence could mean that the political right helped the political left, or it could mean
the correct hired workers (the right help) left the premises. The difficulty is that the word
“right” is both a noun and an adjective, the word “help” is both a verb and a noun, and the
word “left” is both a noun and a verb. Using the grammar in Table 16.1, we can parse the
sentence in the two different ways shown in Figure 16.3. When a sentence can be parsed in
more than one way, we say the sentence has syntactic ambiguity. There are many, more
amusing forms of syntactic ambiguity, but many of them require a more complex grammar
that allows preposition phrases. Table 16.2 shows such a grammar without the lexicon.
Words that are Prepositions are words such as “by”, “of”, and “to”.

Example 16.2 The following are more syntactically ambiguous sentences:

i
i

i
i

i
i

i
i

16.1 Parsing 421

Table 16.2 A CFG that Allows Prepositional Phrases (without the lexicon).

1 Sentence→ NounPhrase V erbPhrase

2 Sentence→ NounPhrase Aux V erbPhrase

3 Sentence→ Sentence Conj Sentence

4 NounPhrase→ Article Noun

5 NounPhrase→ Adj Noun

6 NounPhrase→ Article Adj Noun

7 NounPhrase→ Noun

8 NounPhrase→ NounPhrase PP

9 PP → Preposition NP

10 V erbPhrase→ V erb NounPhrase

11 V erbPhrase→ V erb

12 V erbPhrase→ V erb NounPhrase PP

13 V erbPhrase→ V erb PP

Teacher strikes idle kids.

Two sisters reunited after 18 years in checkout counter.

The lady hit the man with an umbrella.

Joe and Sam are hunting dogs.

Finally, we have the old Groucho Marx joke:

I once shot an elephant in my pajamas. How he got into my pajamas, I’ll never know. �

The modification suggested for Algorithm 16.1 produces the first parse that the algorithm
finds. It is left as an exercise to write another modification that produces all parses of a
sentence.

Another type of ambiguity is lexical ambiguity, which arises when a word or phrase
has more than one meaning. Consider this sentence:

I deposited my money in the bank.

This sentence could mean that I put my money in a financial institution, which is the usual
meaning. However, it could also mean that I put it next to a river. Notice that the sentence
allows only one parse; the ambiguity is in the meaning of the word “bank”.

Example 16.3 The following are other examples of lexical ambiguity:

Prostitutes appeal to governor.

President seeks arms.

Francisco put the mouse on the desk.

i
i

i
i

i
i

i
i

422 Chapter 16 Natural Language Understanding

Table 16.3 A Simple Grammar

1 S → A B
2 A→ A C
3 B → C B
4 A→ x | y
5 B → x
6 C → x

Jim likes his new pen. �

Yet a third type of ambiguity occurs in the following sentence:

I love it when I stub my toe.

There is only one way to parse the sentence and there is no word in the sentence that
has more than one meaning. However, the speaker could be a masochist and really love
stubbing a toe, but more likely the speaker is being facetious. Without further context it is
impossible to know which is the case. This is an example of semantic ambiguity.

16.1.3 Dynamic Programming Parser

At the beginning of Section 16.1.1 we discussed parsing the sentence “the monkey can read
and the man can love” using the grammar in Table 16.1. We noted that we could try parsing
the sentence first starting with Rule 1, then backing up and starting with Rule 2, and finally
backing up and starting with Rule 3. This procedure is precisely what Algorithm 16.1 does.
In the process, the phrase “the monkey” is repeatedly parsed over and over. Often, recursive
algorithms have this problem, namely that the same subinstance is reevaluated. When this
happens, we can often obtain a more efficient algorithm using dynamic programming. In
dynamic programming, we solve small subinstances first, store the result, and later, when
we need the result, look it up instead of recomputing it. Often, an array or table is used
to store the results. John Cocke, Daniel Younger, and Tadeo Kasami developed the CYK
dynamic programming algorithm for the parsing problem. The algorithm requires the
grammar to be in Chomsky normal form, which is not a problem because, as noted earlier,
any context-free grammar can be converted to one that is in Chomsky normal form. We
discuss this algorithm next. Our discussion is based on a similar discussion in [Allison, 2007].

Suppose we have the simple grammar in Table 16.3, and we want to parse the sentence

y x x x x.

We develop an n × n table where n is the number of words in the sentence (n = 5 in this
example), and we construct our solution in the lower-right part of the table. Such a table
T appears in Figure 16.4. We construct the solution by filling in diagonals 1, 2, 3, 4, and
5 in sequence. The sentence appears on the edges of diagonal 1. The values for diagonal
1 are computed directly from the words in the sentence. For each of the other diagonals,
the value for T [i, j] is determined from the elements in row i that are left of T [i, j] and the
values in column j that are above T [i, j]. For example, suppose that we are determining the
value of T [2, 5]. Figure 16.4 shows how that value is determined from values in row 2 and
column 5. The far-left item in row 2 (the one in column 2) is combined with the closest
item in column 5 (the one in row 3). Then the next item in row 2 (the one in column 3)
is combined with the next item in column 5 (the one in row 4). Finally, the closest item in

i
i

i
i

i
i

i
i

16.1 Parsing 423

y

x

x

x

x

1 2 3 4 5

1

2

3

4

5

1 2 3 54

row

column

diagonal

Figure 16.4 A table for constructing the solution to parsing the sentence “y x x x x.”

row 2 (the one in column 4) is combined with the farthest item in column 5 (the one in row
5). The result of all these combinations determines the value of T [2, 5].

Next we walk through the algorithm using the sentence “y x x x x,” show how the values
are combined, and along the way explain why this results in the solution finally appearing
in T [1, 5].

To determine the values in diagonal 1 we visit each array slot in that diagonal in sequence.
When visiting the first one (T [1, 1]), we find a “y” on its edge (see Figure 16.5 (a)). We then
look at the rules in grammar and see which nonterminals can yield a “y”. The only such
nonterminal is A; so we place an A in the T [1, 1]. We then visit the next array slot (T [2, 2]),
we find an “x” on its edge, and see from the rules that A, B, and C can all determine an
“x”. So we place A, B, and C all in T [2, 2]. In the same way, A, B, and C are placed in
the remaining array slots in diagonal 1. The result appears in Figure 16.5 (a). Note that
these array slots now contain the values that could possibly be in the nodes directly above
the leaves (terminals) in the parse tree.

Next we determine the values in diagonal 2. The value of the first one (T [1, 2]) is
determined as follows. We investigate the values in the array slot on its left (T [1, 1]) and
in the array slot above (T [2, 2]), and look for rules that have precisely one nonterminal
from each of these array slots on its right side. For each such rule we find, we place the
nonterminal on its left side in T [1, 2]. For example, we place S in T [1, 2] because we have
the rule S ← A B, and A is in T [1, 1] while B is in T [2, 2]. We place an A in T [1, 2] owing
to the rule A ← A C. We now know that the sentence “y x” can be derived as an S and
as an A. The remainder of diagonal 2 is completed in the same way. That is, the values in
each array slot are determined from the values in the slot to its left and in the slot above
it. Figure 16.5 (b) shows the result.

The completion of diagonal 3 is done in the same way, but is a little more complicated.
Look again at Figure 16.4. It shows that three pairs of array slots are used to determine
the values in T [2, 5], which is in diagonal 4. Similarly, two pairs of array slots are used to
determine the values in diagonal 3. To determine the values in T [1, 3], we investigate T [1, 1]
with T [2, 3] and T [1, 2] with T [3, 3]. These investigations enable us to place an S and an
A in T [1, 3]. We now know that the sentence “y x x” can be derived as an S or as an A.

i
i

i
i

i
i

i
i

424 Chapter 16 Natural Language Understanding

y

x

x

x

x

A

A,B,C

A,B,C

A,B,C

y

x

x

x

x

A

A,B,C

A,B,C

A,B,C

S,A

S,A,B

(a) (b)

(e)

y

x

x

x

x

A

A,B,C

A,B,C

A,B,C

S,A

S,A,B

(c)

A,B,C A,B,C S,A,B

S,A,B

S,A,B

S,A,B

A,B,C

S,A

y

x

x

x

x

A

A,B,C

A,B,C

A,B,C

S,A

S,A,B

(d)

S,A,B

S,A,B

A,B,C

S,A S,A

S,A,B

S,A,B S,A,B

S,A,B

S,A,B

y

x

x

x

A

A,B,C

A,B,C

A,B,C

S,A

S,A,B

S,A,B

S,A,B

A,B,C

S,A S,A

S,A,B

S,A,B

S,A,B

S,A

Figure 16.5 The array values determined when the CYK algorithm parses “y x x x x.”

i
i

i
i

i
i

i
i

16.1 Parsing 425

y

x

y

x

x

A

A,B,C

A

A,B,C

A,B,C

y

x

y

x

x

A

A,B,C

A

A,B,C

A,B,C

S,A

d

S,A

S,A,B

y

x

y

x

x

A

A,B,C

A

A,B,C

A,B,C

S,A

d

S,A

S,A,B

d

d

S,A

d

d

y

x

y

x

x

A

A,B,C

A

A,B,C

A,B,C

S,A

d

S,A

S,A,B

d

d

S,A

d

d d

(a) (b)

(d)

(e)

y

x

y

x

x

A

A,B,C

A

A,B,C

A,B,C

S,A

d

S,A

S,A,B

d

d

S,A

(c)

Figure 16.6 The array values determined when the CYK algorithm tries to parse “y x y x
x.”

i
i

i
i

i
i

i
i

426 Chapter 16 Natural Language Understanding

Diagonals 4 and 5 are completed in the same way. Because S appears in T [1, 5], we know
that we can derive the sentence “y x x x x” as an S, which means it is a legal sentence.

Suppose now that we want to parse the sentence

y x y x x.

Figure 16.6 shows the steps in the parsing of this sentence. Notice that there is a φ in
array slot T [2, 3]. This is because there is no rule whose left-hand side consists of A, B,
C followed by A. This means that it is not possible to derive the sentence “x y” as any
nonterminal. Note that this does not necessarily mean that we cannot derive “y x y x x”
because possibly we could derive “y x” as a nonterminal, “y x x” as a nonterminal, and
these two nonterminals as an S. However, this is not the case because we end up with a φ
in T [1, 5], which means S /∈ T [1, 5] and the sentence is not legal.

It is left as an exercise to write the CYK algorithm and show that its time complexity
is θ(mn3), where m is the number of rules and n is the number of words in the sentence.
Furthermore, the algorithm can be extended by storing pointers to parse tree nodes in the
array slots (or in a second array). All possible parse trees (which might be exponential in
number) can then be retrieved from the array. It is also left as an exercise to write this
extension.

16.1.4 Probabilistic Parser

If we write the CYK algorithm as suggested at the end of the last section, we can retrieve
all possible parse trees for a given sentence. However, our goal is ordinarily to retrieve the
most likely parse tree or the several most likely parse trees. This matter is addressed by
using a probabilistic context-free grammar (PCFG). Table 16.4 shows a PCFG.

Each rule in a PCFG has a probability associated with it. The probabilities for the rules
for a given category sum to 1. For example, there are three rules for Sentence, namely
Rules 1, 2, and 3. We have that

P (Rule 1) + P (Rule 2) + P (Rule 3) = .6 + .25 + .15 = 1.

This means, for example, that if a string is a Sentence, then it has a .6 probability of being
a NounPhrase followed by a V erbPhrase. For a category that is substituted by a terminal,
we have written the set of all substitutions as one rule. So it is the probabilities in this one
rule that sum to 1. For example, in Rule 12,

P (a) + P (an) + p(the) = .4 + .2 + .4 = 1.

This means, for example, that given that the word is an Article, it has a .4 probability
of being an “a”. Of course, we have used a very small lexicon for the sake of example.
In an actual application there would be many more words (perhaps approaching the entire
dictionary), and each word would have a much smaller probability.

Figure 16.7 shows the parse trees in Figure 16.3 with probabilities from Table 16.4 added.
We make independence assumptions similar to those in a Bayesian network. Namely, we
assume, for example, that the P (right|Noun) = .15 regardless of the values of other nodes
in the parse tree. Call the parse tree in Figure 16.7 (a) Parsea and the one in Figure 16.7
(a) Parseb. Given our assumptions, we have the following:

P (Parsea) = .15× .3× .2× .15× .3× .8× .65 = 2. 11× 10−4

P (Parseb) = .2× .1× .3× .1× .2× .65 = 7. 8× 10−5.

i
i

i
i

i
i

i
i

16.1 Parsing 427

Table 16.4 A PCFG

1 Sentence→ NounPhrase V erbPhrase [.65]

2 Sentence→ NounPhrase Aux V erbPhrase [.25]

3 Sentence→ Sentence Conj Sentence [.1]

4 NounPhrase→ Article Noun [.3]

5 NounPhrase→ Adj Noun [.3]

6 NounPhrase→ Article Adj Noun [.1]

7 NounPhrase→ Noun [.3]

8 V erbPhrase→ V erb NounPhrase [.8]

9 V erbPhrase→ V erb [.2]

10 Noun→ man [.2] | monkey [.2] | book [.2]

| right [.15] | left [.15] | help [.1]

11 V erb→ read [.25] | reads [.1] | love [.25]

| loves [.1] | left [.1] | help [.2]

12 Article→ a [.4] | an [.2] | the [(.4]

13 Adj → fat | [.4] | big [.4] | right [.2]

14 Aux → can [.5] | may [.5]

15 Conj ← and [.5] | or [.5]

So we choose Parsea because it is more probable. Because these are the only two parses of
the sentence “right help left”, the probability of the sentence is 2. 11× 10−4 + 7. 8× 10−5 =
2. 89× 10−4.

To find the most probable parse from the array of pointers produced by the CYK algo-
rithm, we can simply find all the parse trees and choose the most probable one. However, if
we only want the most probable one (or few most probable ones), we can search the space
of all parse trees using a best-first search algorithm called A* [Dechter and Pearl, 1985].

The parse with the highest probability is not necessarily the sensible one. Consider again
this sentence.

I shot an elephant in my pajamas.

Sentence

NounPhrase VerbPhrase

Noun Verb NounPhrase

Noun

right help left

Sentence

NounPhrase VerbPhrase

Adj Noun Verb

right help left

(a) (b)

.65

.3

.15 .2

.8

.3

.15

.3

.65

.2 .1

.2

.1

Figure 16.7 Two parse trees for the sentence “right help left” with probabilities.

i
i

i
i

i
i

i
i

428 Chapter 16 Natural Language Understanding

Depending on the probabilities in the PCFG, the parse that entails that the elephant is
wearing the pajamas could easily have a higher probability than the other parse. The parser
would need to recognize that the phrase “elephant in x” is unlikely when x = pajamas.

Two parses of a given sentence can even have the same probability regardless of the
actual probability values. Consider this sentence:

dogs in houses and cats like humans.

It is left as an exercise to show that the two parses of this sentence use the same set of rules
and clearly contain the same words. So the probabilities of the two parses must be identical.

16.1.5 Obtaining Probabilities for a PCFG

The most straightforward way to learn the probabilities for a PCFG is to learn them from
a treebank, which is a collection of correct parse trees. For example, the well-known Penn
treebank [Marcus et al., 1993] contains 3, 000, 000 words along with their parts of speech,
and parse trees containing the words. It was developed using efforts by experts along with
automation.

Example 16.4 Suppose we have the grammar in Table 16.2, and we want to learn the
probability for this rule:

NounPhrase→ NounPhrase PP

If there are 200, 000 occurrences of NounPhrase in the parse trees in the treebank, and
10, 000 of them point to NounPhrase PP , then the probability of this rule is estimated to
be

10000

200000
= .05.

Suppose now that we have a dataset consisting of unparsed sentences instead of a
treebank. The inside-outside algorithm uses the expectation-maximization (EM)
method to not only learn the probabilities but also the rules themselves from such a dataset.
See [Lari and Young, 1990] or [Manning and Schuetze, 2003] for a discussion of the inside-
outside algorithm, [Neapolitan, 2004] for an introduction to the EM method in the Bayesian
network domain, and [McLachlan and Krishnan, 2008] for complete coverage of the EM
method.

16.1.6 Lexicalized PCFG

The difficulty with PCFGs is that they are indeed context free. So the probability of a given
word does not depend on the other words in the sentence. This problem was mentioned at
the end of Section 16.1.4. Here is a simple example. Consider these two verb phrases parsed
as a verb followed by a noun:

demands quiet.

sleep quiet.

The probabilities of the phrases will depend only on the probabilities of the individual words.
The fact that an intransitive verb such as “sleep” would almost certainly not be followed by
a noun in a verb phrase is not modeled. So if we parsed the sentence “when I sleep quiet
rooms help,” the parse tree that treated “quiet” as a noun would not be determined to be
extremely improbable.

i
i

i
i

i
i

i
i

16.1 Parsing 429

Table 16.5 A Simple LPCFG

1 S → NP (n) V P (v) P1(n, v) P1(man,demands) = .01, ...

2 NP (n)→ Art(a) N(n) P2(a, n) P2(the,man) = .03, ...

3 NP (n)→ N(n) P3(n) P3(quiet) = .6, ...

4 V P (v)→ V (v) NP (n) P4(v, n) P4(demands,quiet) = .02,

P4(sleeps,quiet) = .00001, ...

5 V P (v)→ V (v) P5(v) P5(demands) = .00001,

P5(sleeps) = .06, ...

S

NP(man) VP(demands)

V(demands) NP(quiet)

N(quiet)

demands quiet

Art(the) .3 .02N(man)

the man

.6

.01

Figure 16.8 A parse tree obtained using an LPCFG.

This difficulty is addressed by a lexicalized PCFG (LPCFG). In such a grammar we
are able to focus on patterns of words occurring together. Table 16.5 shows a simple LPCFG.
If a phrase can be parsed by a given category, we call the head of the phrase the word that
is most important to the category. For example, if the category is a noun phrase and the
phrase is “the man”, the head of the phrase is “man”. If the category is a verb phrase and
the phrase is “demands quiet”, the head of the phrase is “demands”. For brevity in what
follows, we replace Sentence by S, NounPhrase by NP , etc. The notation NP (n) is used
to denote a phrase categorized as a noun phrase whose head is n. Using this notation, Table
16.5 shows a simple LPGFG. The probability P1(n, v) is defined for every noun and verb in
the lexicon. We store the probability of each such pair. For example,

P1(man, demands) = .01.

Because these are all the ways an S can be formed, these probabilities sum to 1. The
probabilities P2(a, n) are defined for every article and noun pair, and the probability P3(n)
is defined for every noun. Because these are all the ways an NP can be formed, all values of
P2(a, n) and P3(n) sum to 1. The other probabilities in the grammar are similarly defined.

Figure 16.8 shows the parse tree obtained using the grammar in Table 16.5 to parse the
following sentence:

the man demands quiet.

If we call this parse Parse, we have that

P (Parse) = .6× .02× .3× .01 = 3. 6× 10−5.

i
i

i
i

i
i

i
i

430 Chapter 16 Natural Language Understanding

Because this is the only parse of the sentence, this is also the probability of the sentence.
Consider now the following sentence:

the man sleeps quiet.

Because P4(sleeps,quiet) = .00001, this sentence will have a much smaller probability.
A problem with an LPCFG is that it requires many more probabilities than a PCFG.

One way to handle this problem is to estimate the P4(v, n) for a rare (v, n) tuple by a
probability that depends only on v.

The LPCFG we have shown is very simple. There are a number of ways of developing
and learning LPCFGs. You are referred to the following texts and papers: [Charniak, 1993],
[Charniak, 1997], [Manning and Schuetze, 2003], [Collins, 1997].

16.2 Semantic Interpretation

Parsing produces a tree that represents the linguistic components of a sentence such as
the subject, verb, and object, and their relationships. The next step, namely semantic
interpretation, represents the meaning of the sentence from the parse tree. By meaning
we mean a statement that can be added to the knowledge base or a query that can be
presented to the knowledge base. For example, suppose the domain of discourse is the
blocks world in Section 4.2.2. Suppose further that the sentence is “block a is situated on
block b.” Then the semantics of the sentence is on(a,b) and the semantic interpretation of
the sentence must derive this logical formula from the sentence.

In Figure 16.1 we depicted the semantic interpretation as a step that follows parsing for
the sake of clarity. However, it could proceed along with parsing. Next we show a way to
do them simultaneously.

For the sake of simplicity, suppose our sentence is as follows:

a on b.

.
Based on this sentence, we should derive the logical statement on(a,b). Table 16.6 shows

a simple grammar for this domain augmented with semantics. The terminal are “a”, “ b”,
and “on”. The semantics (meaning) of the terminals “a” and “b” are the logical terms “a”
and “b”. Because in general a noun part (NP) could be something other than a block,
we have Rule 2, namely NP (obj)→ Block(obj). The variable obj represents the semantics
or meaning of a constituent of the sentence. So using Rule 4 we can obtain Block(a), and
then using Rule 2 we can obtain NP (a). The difficulty is deriving “on b”. The semantic
interpretation of this phrase is neither a term, nor a predicate, nor a logical sentence.
However, we can consider “on b” a predicate that, when combined with a term (in this case
a), yields a logical sentence. To accomplish this, we represent “on b” a predicate as follows:

λx on(x,b).

This is λ-notation, and it represents an unnamed function of x. We can apply the function
to “a” as follows:

on(a,b) = λx on(x,b) (a).

So when we apply Rule 1 with obj having the value a and pred having the value λx on(x,b),
we obtain the derivation

S(on(a,b)) = S(λx on(x,b) (a))→ NP (a) V P (λx on(x,b).

i
i

i
i

i
i

i
i

16.3 Concept/Knowledge Interpretation 431

Table 16.6 A grammar augmented with semantics

1 S(pred(obj))→ NP (obj) V P (pred)

2 NP (obj)→ Block(obj)

3 V P (pred(obj))→ V erb(pred) NP (obj)

4 Block(a) → a

5 Block(b) → b

6 V erb(λy λx on(x, y)) → on

S(on(a, b))

NP(a) VP(λx on(x, b))

Block(a)

a

Verb(λx λy on(x, y))

on b

NP(b)

Block(b)

Figure 16.9 A derivation of the semantic interpretation on(a,b) from the sentence “a on
b”.

In the same way, the verb “on” is represented as the following predicate:

λy λx on(x, y).

Applying this predicate to “b” we have the following:

on(x,b) = λyλx on(x, y) (b).

Figure 16.9 shows the parse tree deriving the semantic interpretation on(a,b) from “a
on b”.

We have shown how to hard-code semantic interpretations into the parse tree. Zelle and
Mooney [1996] developed CHILL, which learns semantic interpretations from examples.

16.3 Concept/Knowledge Interpretation

Semantic interpretation of a sentence produces a unit of information such as the logical
statement on(a,b). In the final step, concept/knowledge or contextual interpretation,
the item of information is incorporated into the knowledge base. For example, suppose our
world or knowledge base consists of two rooms, Room 1 and Room 2; Room 1 has a table
and the blocks in that room are situated on the table as shown on the left in Figure 16.10;
and Room 2 has no table and the blocks in that room are situated as shown on the right
in Figure 16.10. If our semantic interpretation is on(a,b), how do we know whether to
place block a on block b in Room 1 or Room 2? Linguists handle the problem using the
notion of a situation, which is a particular set of circumstances in the world. The situation
keeps track of everything that has happened so far. In the current example, the situation

i
i

i
i

i
i

i
i

432 Chapter 16 Natural Language Understanding

b
a c e

d

Room 1

b

a c e
d

Room 2

b
a

c e
d

Room 1 Room 2

Contextual Interpreta on

b

a c e
d

Figure 16.10 In the current situation, the robot is in Room 1.

includes not only the placement of the various blocks in the rooms, but also that the robot
is currently in Room 1. So the contextual interpretation of on(a,b) is to place block a on
block b in Room 1.

16.4 Information Extraction

We close with an application of language understanding, namely information extraction. An
information extraction system takes as input a body of text, and extracts from it facts
concerning pre-specified topics of interest. Figure 16.11 shows an example of how such a
system proceeds. The purpose of this particular system is to extract information relative to
the domain of natural disasters. The desired information is represented by a template that
contains the precise attributes we want to retrieve. In this case they are as follows: Event,
Date, Time, Location, Damage, Estimated Losses, and Injuries. In the example in Figure
16.11, the text consists of a paragraph that might appear in the local newspaper about an
earthquake in Dallas, and the information extracted consists of all the information about
the earthquake.

After discussing the various useful applications of information extraction, we present an
architecture for an information extraction system.

16.4.1 Applications of Information Extraction

Today information extraction often concerns mining desired facts from information appear-
ing on the Web. Applications involve monitoring newspapers and other articles to learn
details of natural disasters, terrorist events, political affairs, business ventures, scientific dis-

i
i

i
i

i
i

i
i

16.4 Information Extraction 433

April 4 Dallas – Early last evening a tornado swept through an area

northwest of Dallas, causing extensive damage. Witnesses confirm that

the twister occurred without warning at approximately 7:15 pm and

destroyed two mobile homes. The Texaco sta�on at 102 Main street,

Farmers Branch, Texas, was also severely damaged, but no injuries

were reported. Total property damages are es�mated to be $350,000.

Event: tornado

Date: 4/3/2011

Time: 19:15

Loca�on: Farmers Branch; northwest of Dallas; Texas; USA

Damage: mobile homes (2); Texaco sta�on (1)

Es�mated Losses: $350,000

 Injuries: none

Informa�on

Extrac�on

System

Figure 16.11 An example of an information extraction system in the domain of natural
disasters.

coveries, etc. Another application involves summarizing free-form patient records to extract
symptoms, test results, treatments, and diagnoses. Yet another application concerns the
automatic classification of documents such as legal documents.

16.4.2 Architecture for an Information Extraction System

Various approaches have been tried in the development of an information extraction system.
At one extreme, systems were developed that simply performed keyword matching with no
linguistic analysis at all. At the other extreme, systems processed the text using all the
natural language understanding techniques developed in this chapter, including syntactic
analysis, semantic interpretation, and contextual interpretation.

Cardie [1997] described what evolved as a standard architecture for an information ex-
traction system. That architecture appears in Figure 16.12. We discuss each component of
the architecture in turn.

1. Tokenization and tagging: In this step each word is disambiguated or tagged
regarding its part of speech.

2. Sentence analysis: This stage performs syntactic analysis and finds and labels se-
mantic entities relevant to each extraction topic. For example, in the natural disaster
domain, the system identifies events, locations, names, injury expressions, time ex-
pressions, and money expressions. The goal of sentence analysis in an information
extraction system is not to produce a complete parse tree as is the case in a standard
natural language understanding program. Rather, the system does partial parsing,

i
i

i
i

i
i

i
i

434 Chapter 16 Natural Language Understanding

April 4 Dallas – Early last evening a

tornado swept through an area

northwest of Dallas, causing

extensive damage…...

Tokeniza on

and Tagging

early: adverb

last: adjec ve

evening: noun (me)

a: determinant

tornado: noun (weather)

swept: verb

through: preposi on

…...

Sentence

Analysis

early last evening: adverbial phrase (me)

a tornado: noun group / subject

swept: verb group

through an area: prep phrase (loca on)

northwest of Dallas: adverbial phrase (loca on)

causing: verb group

extensive damage: noun group / object

…...

Extrac on

Phrase Extracted Information

tornado swept Event: tornado

tornado swept through an area Loca on: area

area northwest of Dallas Loca on: northwest of Dallas

causing extensive damage Damage: extensive

…...

Merging

…...Early last evening a tornado swept

through an area northwest of

Dallas…...Witnesses confirmed that the

twister…...

Template

Genera on

Event: tornado

Date: 4/3/2011

Time: 19:15

…...

Figure 16.12 Architecture for an Information Extraction System.

which involves only developing as much structure as is needed to accomplish the in-
formation extraction task. A partial parser looks for fragments of recognizable texts
such as noun groups and verb groups.

3. Extraction: In the extraction phase, the system concentrates on identifying the
information that is relevant to the particular domain. For example, in the natural
disaster domain, it identifies events (tornado) and locations (“area” and “northwest
of Dallas”).

4. Merging: In the merging phase, the system tries to resolve whether different entities
discovered in the text are the same entity. For example, in the text concerning the
tornado in Dallas, the system might resolve that “tornado” and “twister” refer to the
same entity. The purpose here is to enable the system to associate information in
two different statements with one entity. For example, in the case of the tornado, we
have the text “a tornado swept...causing excessive damage,” and “the twister occurred
without warning....and destroyed two mobile homes.” Once we identify that “tornado”
and “twister” are the same entity, we know that the tornado caused excessive damage
and destroyed the two mobile homes.

5. Template Generation: In the template phase, the extracted information is mapped
to attributes required by the template.

Cardie [1997] discusses algorithms for implementing the architecture just presented.

i
i

i
i

i
i

i
i

16.5 Discussion and Further Reading 435

16.5 Discussion and Further Reading

There is much more to the field of natural language understanding than the introduction
provided here, both at theoretical and algorithmic levels. Two popular texts on the sub-
ject are [Allen, 1995] and [Jurafsky and Martin, 2009]. The former text had long been the
standard, while the latter one is more current in that it covers the advances in statisti-
cal techniques that have occurred recently. Natural language understanding is a sub-field
of natural language processing (NLP) , which concerns both understanding natural
language input and producing natural language output. The latter text mentioned above,
namely [Jurafsky and Martin, 2009], covers both aspects of NLP.

EXERCISES

Section 16.1

Exercise 16.1 Show that any context-free grammar can be transformed into a grammar
in Chomsky normal form.

Exercise 16.2 Using the CFG in Table 16.1, parse these sentences and show the resultant
parse trees:

1. A big man loves the monkey.

2. The fat monkey can read the right book.

3. The man loves the left and the monkey loves the right.

Exercise 16.3 Modify Algorithm 16.1 so that it produces a parse tree.

Exercise 16.4 Implement Algorithm 16.1 and use it to parse the sentences in Exercise 16.2

Exercise 16.5 Show two different parse trees for each of the sentences in Example 16.2.

Exercise 16.6 Using the grammar in Table 16.3, show the table produced by the CYK
algorithm when parsing each of the following sentences:

1. y y x x x

2. x x y x x

3. x y y y y.

Exercise 16.7 Implement the CYK algorithm.

Exercise 16.8 Show that the time complexity of the CYK algorithm is θ(mn3), where m
is the number of rules and n is the number of words in the sentence.

Exercise 16.9 Using the PCFG in Table 16.4, compute probabilities of the sentences in
Exercise 16.2.

i
i

i
i

i
i

i
i

436 Chapter 16 Natural Language Understanding

Exercise 16.10 Using the LPCFG in Table 16.5, obtain the parse tree and compute the
probability of this sentence:

The man sleeps quiet.

Section 16.2

Exercise 16.11 Augment the grammar in Table 16.1 with semantics, and use the aug-
mented grammar to obtain semantics for the sentences in Exercise 16.2.

i i

References

Allen, 1995 Allen, J., Natural Language Understanding, Ben-
jamin/Cummings, 1995.

Allison, 2007 Allison, C., “Practical Computation Theory,” The Jour-
nal of Computing Sciences in Colleges, Vol. 22, No. 10,
2007.

Amarel, 1968 Amarel, S., “On Representations of Problems of Rea-
soning About Actions,” in Michie, D. (Ed.): Machine
Intelligence 3, Elsevier/North-Holland, 1968.

Anderson et al., 2007 Anderson, D., D. Sweeney, and T. Williams, Statistics
for Business and Economics, South-Western, 2007.

Ash, 1970 Ash, R. B., Basic Probability Theory, Wiley, 1970.

Baldassarre et al., 2007 Baldassarre, G., et al., “Self-Organized Coordinated Mo-
tion in Groups of Physically Connect Robots,” IEEE
Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, Vol. 37, No. 1, 2007.

Banzhaf et al., 1998 Banzhaf, W., P. Nordin, R. E. Keller, and F. D. Fran-
cone, Genetic Programming An Introduction, Morgan
Kaufmann, 1998.

Basye et al., 1992 Basye, K., T. Dean, J. Kirman, and M. Lejter, “A
Decision-Theoretic Approach to Planning, Perception
and Control,” IEEE Expert, Vol. 7, No. 4, 1992.

Bauer et al., 1997 Bauer, E., D. Koller, and Y. Singer, “Update Rules for
Parameter Estimation in Bayesian Networks,” in Geiger,
D., and P. Shenoy (Eds.): Uncertainty in Artificial Intel-
ligence; Proceedings of the Thirteenth Conference, Mor-
gan Kaufmann, 1997.

Beckers et al., 1992 Beckers, E., S. Ceria, and G. Cornuéjols, “Trails and U-
turns in the Selection of the Shortest Path by the Ant
Lasius Nifwe,” Journal of Theoretical Biology, Vol. 159,
1992.

Beinlich et al., 1989 Beinlich, I. A., H. J. Suermondt, R. M. Chavez, and G.
F. Cooper, “The ALARM Monitoring System: A Case
Study with Two Probabilistic Inference Techniques for
Belief Networks,” Proceedings of the Second European

i
i

i
i

i
i

i
i

438 REFERENCES

Conference on Artificial Intelligence in Medicine, Lon-
don, 1989.

Bell, 1982 Bell, D.E., “Regret in Decision Making Under Uncer-
tainty,” Operations Research, Vol. 30, No. 5, 1982.

Bellman, 1957 Bellman, R., “A Markovian Decision Process.” Journal
of Mathematics and Mechanics, Vol. 6, No. 4, 1957.

Benson, 1995 Benson, S., “Active Model Learning and Action Execu-
tion in a Reactive Agent,” Proceedings of the 1995 Inter-
national Joint Conference in Artificial Intelligence (IJ-
CAI), 1995.

Bentler, 1980 Bentler, P. N., “Multivariate Analysis with Latent Vari-
ables,” Review of Psychology, Vol. 31, 1980.

Bernardo and Smith, 1994 Bernado, J., and A. Smith, Bayesian Theory, Wiley, New
York, 1994.

Bilmes, 2000 Bilmes, J.A., “Dynamic Bayesian Multinets,” in
Boutilier, C. and M. Goldszmidt (Eds.): Uncertainty in
Artificial Intelligence; Proceedings of the Sixteenth Con-
ference, Morgan Kaufmann, 2000.

Boden, 1977 Boden, M.A., Artificial Intelligence and Natural Man,
Basic Books, 1977.

Bottou, 1991 Bottou, L., “Stochastic Gradient Learning in Neural Net-
works,” Proceedings of Neuro-Nı̂mes 91, Nimes, France:
EC2, 1991.

Brachman and Levesque, 2004 Brachman, R.J., and H.J. Levesque, Knowledge Repre-
sentation and Reasoning, Morgan Kaufmann, 2004.

Breder, 1954 Breder, C.M., “Equations Descriptive of Fish Schools
and Other Animal Aggregations,” Ecology, Vol. 35, 1954.

Breese et al., 1998 Breese, J., D. Heckerman, and C. Kadie, “Empirical
Analysis of Predictive Algorithms for Collaborative Fil-
tering,” in Cooper, G.F., and S. Moral (Eds.): Uncer-
tainty in Artificial Intelligence; Proceedings of the Four-
teenth Conference, Morgan Kaufmann, 1998.

Breiman et al., 1984 Breiman, L., J. Friedman, R. Olshen, and C. Stone, Clas-
sification and Regression Trees, Wadsworth and Brooks,
1984.

Brooks, 1981 Brooks, R.A., “Symbolic Reasoning Among 3-D Models
and 3-D Images,” Artificial Intelligence, Vol. 17, No. 1–3,
1981.

Brooks, 1991 Brooks, R.A., “Intelligence without Representation,” Ar-
tificial Intelligence, Vol. 47, 1991.

Buchanan and Shortliffe, 1984 Buchanan, B.G., and E.H. Shortliffe, Rule-Based Expert
System, Addison-Wesley, 1984.

i
i

i
i

i
i

i
i

REFERENCES 439

Bulmer, 2003 Bulmer, M., Francis Galton: Pioneer of Heredity and
Biometry, Johns Hopkins University Press, 2003.

Buntine, 1993 Buntine, W., “Learning Classification Trees,” in Hand,
D.J. (Ed.): Artificial Intelligence Frontiers in Statistics:
AI and Statistics III, Chapman & Hall/CRC, 1993.

Buntine, 2002 Buntine, W., “Tree Classification Software,” Proceedings
of the Third National Technology Transfer Conference
and Exposition, Baltimore, MD, 2002.

Burnell and Horvitz, 1995 Burnell, L., and E. Horvitz, “Structure and Chance:
Melding Logic and Probability for Software Debugging,”
Communications of the ACM, Vol. 38, No. 3, 1995.

Campo et al., 2010 Campo, A., et al., “Artificial Pheromone for Path Selec-
tion by a Foraging Swarm of Robots,” Biological Cyber-
netics, Vol. 103, No. 5, 2010.

Candel et al., 2015 Candel, A., et al. Deep Learning with H2O, H2O.ai, Inc.,
2015.

Cardie, 1997 Cardie, C., “Empirical Methods in Information Extrac-
tion,” AI Magazine, Vol. 18, No. 4, 1997.

Chalmers, 1996 Chalmers, D., The Conscious Mind: In Search of a Fun-
damental Theory, Oxford University Press, 1996.

Charniak, 1993 Charniak, E., Statistical Language Learning, MIT Press,
1993.

Charniak, 1997 Charniak. E, “Statistical Parsing with a Context-Free
Grammar and Word Statistics,” Proceedings of the Four-
teenth National Conference on Artificial Intelligence
(AAAI 1997), 1997.

Cheeseman and Stutz, 1996 Cheeseman, P., and J. Stutz, “Bayesian Classification
(Autoclass): Theory and Results,” in Fayyad, D., G.
Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy (Eds.):
Advances in Knowledge Discovery and Data Mining,
AAAI Press, 1996.

Chib, 1995 Chib, S., “Marginal Likelihood from the Gibbs Output,”
Journal of the American Statistical Association, Vol. 90,
No. 432, 1995.

Chickering, 2001 Chickering, D., “Learning Equivalence Classes of
Bayesian Networks,” Technical Report # MSR-TR-2001-
65, Microsoft Research, Redmond, WA, 2001.

Chickering, 2002 Chickering, D., “Optimal Structure Identification with
Greedy Search,” Journal of Machine Learning Research,
Vol. 3, 2002.

i
i

i
i

i
i

i
i

440 REFERENCES

Chickering and Heckerman, 1997 Chickering, D., and D. Heckerman, “Efficient Approxi-
mation for the Marginal Likelihood of Bayesian Networks
with Hidden Variables,” Technical Report # MSR-TR-
96-08, Microsoft Research, Redmond, WA, 1997.

Chickering and Heckerman, 2000 Chickering, D., and D. Heckerman, “A Decision-
Theoretic Approach to Targeted Advertising,” in
Boutilier, C., and M. Goldszmidt (Eds.): Uncertainty in
Artificial Intelligence; Proceedings of the Sixteenth Con-
ference, Morgan Kaufmann, San Mateo, California, 2000.

Christensen et al., 2009 Christensen, L.M., H. Harkema, P. J. Haug, J. Y. Ir-
win, and W. W. Chapman, “ONYX: A System for the
Semantic Analysis of Clinical Text,” Proceedings of the
Workshop on BioNLP, Boulder, CO, June 04–05, 2009.

Clemen, 1996 Clemen, R.T., Making Hard Decisions, PWS-KENT,
1996.

Collins, 1997 Collins, M., “Three Generative, Lexicalised Models for
Statistical Parsing,” Proceedings of the 35th Annual
Meeting of the Association for Computational Linguis-
tics, 1997.

Collins and Quillan, 1969 Collins, A., and M.R. Quillian, “Retrieval Time from Se-
mantic Memory,” Journal of Verbal Learning and Verbal
Behavior, Vol. 8, 1969.

Cooper, 1990 Cooper, G. F., “The Computational Complexity of Prob-
abilistic Inference Using Bayesian Belief Networks,” Ar-
tificial Intelligence, Vol. 42, No. 2–3, 1990.

Cooper and Herskovits, 1992 Cooper, G. F., and E. Herskovits, “A Bayesian Method
for the Induction of Probabilistic Networks from Data,”
Machine Learning, Vol. 9, 1992.

Cotton et al., 2000 Cotton, S., A. Bundy, and T. Walsh, “Automatic Inven-
tion of Integer Sequences,” Proceedings of AAAI-2000,
MIT Press, 2000.

Curtis, et al. 2012 Curtis, C., et. al.,“The Genomic and Transcriptomic Ar-
chitecture of 2,000 Breast Tumours Reveals Novel Sub-
groups,” Nature, Vol. 486, 2012.

Cozman and Krotkov, 1996 Cozman, F., and E. Krotkov, “Quasi-Bayesian Strategies
for Efficient Plan Generation: Application to the Plan-
ning to Observe Problem,” in Horvitz, E., and F. Jensen
(Eds.): Uncertainty in Artificial Intelligence; Proceedings
of the Twelfth Conference, Morgan Kaufmann, 1996.

Dagum and Chavez, 1993 Dagum, P., and R. M. Chavez, “Approximating Prob-
abilistic Inference in Bayesian Belief Networks,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, Vol. 15, No. 3, 1993.

i
i

i
i

i
i

i
i

REFERENCES 441

Dagum and Luby, 1993 Dagum, P., and M. Luby, “Approximating Probabilis-
tic Inference in Bayesian Belief Networks Is NP-hard,”
Artificial Intelligence, Vol. 60, No. 1, 1993.

Davis and Lenat, 1982 Davis, R., and D.B. Lenat, Knowledge-based Systems in
Artificial Intelligence, McGraw-Hill, 1982.

Dean and Wellman, 1991 Dean, T., and M. Wellman, Planning and Control, Mor-
gan Kaufmann, 1991.

Dechter and Pearl, 1985 Dechter, R., and J. Pearl, “Generalized Best-First Search
Strategies and the Optimality of A*,” Journal of the
ACM, Vol. 32, No. 3, 1985.

de Finetti, 1937 de Finetti, B., “La prévision: See Lois Logiques,
ses Sources Subjectives,” Annales de l’Institut Henri
Poincaré, Vol. 7, 1937.

Delgrande and Schaub, 2003 Delgrande, J., and T. Schaub, “On the Relation Between
Reiter’s Default Logic and its (major) Variants,” Pro-
ceedings of the Seventh European Conference on Symbolic
and Quantitative Approaches to Reasoning with Uncer-
tainty, 2003.

Demirer et al., 2006 Demirer, R., R. Mau, and C. Shenoy, “Bayesian Net-
works: A Decision Tool to Improve Portfolio Risk Anal-
ysis,” Journal of Applied Finance, Vol. 6, No. 2, 2006.

Dempster et al., 1977 Dempster, A, N. Laird, and D. Rubin, “Maximum Like-
lihood from Incomplete Data via the EM Algorithm,”
Journal of the Royal Statistical Society B, Vol. 39, No. 1,
1977.

DePuy et al., 2005 DePuy, G.W., R.J. Moraga, and G.E. Whitehouse,
“Meta-RaPS: A Simple and Effective Approach for Solv-
ing the Traveling Salesman Problem,” Transportation
Research Part E, Vol. 41, No. 2, 2005.

Diez and Druzdzel, 2002 Diez, F.J., and M.J. Druzdzel, “Canonical Probabilistic
Models for Knowledge Engineering,” Technical Report
IA-02-01, Dpto. Inteligencia Artificial, UNED, Madrid,
2002.

Dorigo and Gambardella, 1997 Dorigo, M., and L.M. Gambardella, “Ant Colonies for
the Traveling Salesperson Problem,” Biosystems, Vol. 43,
1997.

Dorigo et al., 1996 Dorigo, M., V. Maniezzo, and A. Colorni, “The Ant Sys-
tem: by a Colony of Cooperating Agents,” IEEE Trans-
action on Systems, Man, and Cybernetics, Part B, Vol.
26, No. 1, 1996.

Doyle, 1979 Doyle, J., “A Truth Maintenance System,” Artificial In-
telligence, Vol. 12, No. 3, 1979.

i
i

i
i

i
i

i
i

442 REFERENCES

Druzdzel and Glymour, 1999 Druzdzel, M.J., and C. Glymour, “Causal Inferences
from Databases: Why Universities Lose Students,” in
Glymour, C., and G.F. Cooper (Eds.): Computation,
Causation, and Discovery, AAAI Press, 1999.

Duda et al., 1976 Duda, R.O., P.E. Hart, and N.J. Nilsson, “Subjective
Bayesian Methods for Rule-Based Inference Systems,”
Technical Report 124, Stanford Research Institute, 1976.

Durbin and Willshaw, 1987 Durbin, R., and D. Willshaw, “An Analogue Approach
to the Traveling Salesperson Problem Using an Elastic
Net Method,” Nature, Vol. 326, 1987.

Edelman, 2006 Edelman, G.M., Second Nature: Brain Science and Hu-
man Knowledge, Yale University Press, 2006.

Edelman, 2007 Edelman, G.M., “Learning in and from Brain-Based De-
vices,” Science, Vol. 318, No. 5853, 2007.

Eells, 1991 Eells, E., Probabilistic Causality, Cambridge University
Press, 1991.

Farnsworth et al., 2004 Farnsworth, G.V., J.A. Kelly, A.S. Othling, and R.J.
Pryor, “Successful Technical Trading Agents Using Ge-
netic Programming,” Technical Report # SAND2004-
4774, Sandia National Laboratories, Albuquerque, NM,
2004.

Feigenbaum et al., 1971 Feigenbaum, E.A., B.G. Buchanan, and J. Lederberg,
“On Generality and Problem Solving: A Case Study Us-
ing the Dendral Program, in Meltzer, B., and D. Mitchie
(Eds.): Machine Intelligence 6, Edinburgh University
Press, 1971.

Feller, 1968 Feller, W., An Introduction to Probability Theory and Its
Applications, Wiley, New York, 1968.

Fikes and Nilsson, 1971 Fikes, R.E., and N.J. Nilsson, “STRIPS: A New Ap-
proach to the Application of Theorem Proving to Ar-
tificial Intelligence,” Artificial Intelligence, Vol. 3, No. 2,
1971.

Fishelson and Geiger, 2002 Fishelson, M., and D. Geiger, “Exact Genetic Linkage
Computations for General Pedigrees,” Bioinformatics,
Vol. 18 (supplement 1), 2002.

Fishelson and Geiger, 2004 Fishelson, M., and D. Geiger, “Optimizing Exact Ge-
netic Linkage Computation,” Journal of Computational
Biology, Vol. 11, No. 2−3, 2004.

Fogel, 1994 Fogel, D.B., “Evolutionary Programming in Perspective:
The Top-Down View,” in Zurada, J.M., R.J. Marks II,
and C.J. Robinson (Eds.): Computational Intelligence:
Imitating Life, IEEE Press, 1994.

i
i

i
i

i
i

i
i

REFERENCES 443

Fraser, 1958 Fraser, A.S., “Monte Carlo Analyses of Genetic Models,”
Nature, Vol. 181, 1958.

Freedman et al., 2007 Freedman, F., R. Pisani, and R. Purves, Statistics, W.W.
Norton & Co., 2007.

Friedman et al., 2000 Friedman, N., M. Linial, I. Nachman, and D. Pe’er, “Us-
ing Bayesian Networks to Analyze Expression Data,” in
Proceedings of the Fourth Annual International Confer-
ence on Computational Molecular Biology, 2000.

Friedman et al., 2002 Friedman, N., M. Ninio, I Pe’er, and T. Pupko, “A Struc-
tural EM Algorithm for Phylogenetic Inference,” Journal
of Computational Biology, Vol. 9, No. 2, 2002.

Friedman and Koller, 2003 Friedman, N., and K. Koller, “Being Bayesian about Net-
work Structure: A Bayesian Approach to Structure Dis-
covery in Bayesian Networks,” Machine Learning, Vol.
50, No. 1, 2003.

Fung and Chang, 1990 Fung, R., and K. Chang, “Weighing and Integrating Ev-
idence for Stochastic Simulation in Bayesian Networks,”
in Henrion, M., R. D. Shachter, L. N. Kanal, and J. F.
Lemmer (Eds.): Uncertainty in Artificial Intelligence 5,
North-Holland, 1990.

Galán et al., 2002 Galán, S.F., F. Aguado, F.J. Dı́ez, and J. Mira, “Na-
soNet, Modeling the Spread of Nasopharyngeal Cancer
with Networks of Probabilistic Events in Discrete Time,”
Artificial Intelligence in Medicine, Vol. 25, No. 3, 2002.

Gambardella and Dorigo, 1995 Gambardella, L.M., and M. Dorigo, “Ant-Q: a Reinforce-
ment Learning Approach to the Traveling Salesperson
Problem,” in Prieditis, A., and S. Russell (Eds.): Pro-
ceedings of ML-95, 12th International Conference on Ma-
chine Learning, Morgan Kaufmann, 1995.

Geiger and Heckerman, 1994 Geiger, D., and D. Heckerman, “Learning Gaussian Net-
works,” in de Mantras, R.L., and D. Poole (Eds.): Uncer-
tainty in Artificial Intelligence; Proceedings of the Tenth
Conference, Morgan Kaufmann, 1994.

Gelernter, 1959 Gelernter, H., “Realization of a Geometry Theorem-
Proving Machine,” Proceedings of International Confer-
ence on Information Processing, UNESCO, 1959.

Geman and Geman, 1984 Geman, S., and D. Geman, “Stochastic Relaxation,
Gibb’s Distributions and the Bayesian Restoration of Im-
ages,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, Vol. 6, 1984.

Gilks et al., 1996 Gilks, W.R., S. Richardson, and D.J. Spiegelhalter
(Eds.): Markov Chain Monte Carlo in Practice, Chap-
man & Hall/CRC, 1996.

i
i

i
i

i
i

i
i

444 REFERENCES

Gillispie and Pearlman, 2001 Gillispie, S.B., and M.D. Pearlman, “Enumerating
Markov Equivalence Classes of Acyclic Digraph Mod-
els,” in Koller, D., and J. Breese (Eds.): Uncertainty
in Artificial Intelligence; Proceedings of the Seventeenth
Conference, Morgan Kaufmann, 2001.

Glymour, 2001 Glymour, C., The Mind’s Arrows: Bayes Nets and
Graphical Causal Models in Psychology, MIT Press, 2001.

Glymour and Cooper, 1999 Glymour, C., and G. Cooper, Computation, Causation,
and Discovery, MIT Press, 1999.

Goertzel and Pennachin, 2007 Goertzel, B., and C. Pennachin, Artificial General Intel-
ligence, Springer, 2007.

Goldstone and Janssen, 2005 Goldstone, R.L., and M.A. Janssen, “Computational
Models of Collective Behavior,” Trends in Cognitive Sci-
ences, Vol. 9, No. 9, 2005.

Goodfellow et al., 2016 Goodfellow, I., Y. Bengio, and A. Courville, Deep Learn-
ing, MIT Press, 2016.

Goodwin, 1982 Goodwin, J., “An Improved Algorithm for Non-
Monotonic Dependency Net Update,” Technical Re-
port LITH-MAT-R-82-23, Department of Computer Sci-
ence and Information Science, Linköping University,
Linköping, Sweden, 1982.

Graves, 2014 Graves, A., “Generating Sequences with Recurrent Neu-
ral Networks,” arXiv:1308.0850v5 [cs.NE], 2014.

Griffiths et al., 2007 Griffiths, J. F., S. R. Wessler, R. C. Lewontin, and S.
B. Carroll, An Introduction to Genetic Analysis, W. H.
Freeman and Company, 2007.

Hamilton, 1971 Hamilton, W.D., “Geometry for the Selfish Herd,” Jour-
nal of Theoretical Biology, Vol. 31, 1971.

Hanks and McDermott, 1987 Hanks, S., and D. McDermott, “Nonmonotonic Logic and
Temporal Projection,” Artificial Intelligence, Vol. 33, No.
3, 1987.

Hardwick and Stout, 1991 Hardwick, J.P., and Q.F. Stout, “Bandit Strategies for
Ethical Sequential Allocation,” Computing Science and
Statistics, Vol. 23, 1991

Harnad, 2001 Harnad, S. “What’s Wrong and Right About Searle’s
Chinese Room Argument,” in Bishop, M., and J. Pre-
ston (Eds.): Essays on Searle’s Chinese Room Argument,
Oxford University Press, 2001.

Hartl and Jones, 2006 Hartl, D. L., and E. W. Jones, Essential Genetics, Jones
and Bartlett, 2006..

Hastings, 1970 Hastings, W.K., “Monte Carlo Sampling Methods Us-
ing Markov Chains and Their Applications,” Biometrika,
Vol. 57, No. 1, 1970.

i
i

i
i

i
i

i
i

REFERENCES 445

Hebb, 1949 Hebb, D., The Organization of Behavior, Wiley, 1949.

Heckerman, 1996 Heckerman, D., “A Tutorial on Learning with Bayesian
Networks,” Technical Report # MSR-TR-95-06, Mi-
crosoft Research, Redmond, WA, 1996.

Heckerman and Meek, 1997 Heckerman, D., and C. Meek, “Embedded Bayesian Net-
work Classifiers,” Technical Report MSR-TR-97-06, Mi-
crosoft Research, Redmond, WA, 1997.

Heckerman et al., 1992 Heckerman, D., E. Horvitz, and B. Nathwani, “To-
ward Normative Expert Systems: Part I The Pathfinder
Project,” Methods of Information in Medicine, Vol. 31,
1992.

Heckerman et al., 1994 Heckerman, D., J. Breese, and K. Rommelse, “Trou-
bleshooting under Uncertainty,” Technical Report MSR-
TR-94-07, Microsoft Research, Redmond, WA, 1994.

Heckerman et al., 1999 Heckerman, D., C. Meek, and G. Cooper, “A Bayesian
Approach to Causal Discovery,” in Glymour, C., and
G.F. Cooper (Eds.): Computation, Causation, and Dis-
covery, AAAI Press, 1999.

Heppner and Grenander, 1990 Heppner, F., and U. Grenander, “A Stochastic Nonlinear
Model for Coordinated Bird Flocks,” in Kasner, S. (Ed.):
The Ubiquity of Chaos, AAAS Publications, 1990.

Herskovits and Cooper, 1990 Herskovits, E. H., and G. F. Cooper, “Kutató: An
Entropy-Driven System for the Construction of Proba-
bilistic Expert Systems from Databases,” in Shachter, R.
D., T. S. Levitt, L. N. Kanal, and J. F. Lemmer (Eds.):
Uncertainty in Artificial Intelligence; Proceedings of the
Sixth Conference, North-Holland, 1990.

Herskovits and Dagher, 1997 Herskovits, E.H., and A.P. Dagher, “Applications of
Bayesian Networks to Health Care,” Technical Report
NSI-TR-1997-02, Noetic Systems Incorporated, Balti-
more, MD, 1997.

Hey and Morone, 2004 Hey, J.D., and A. Morone, “Do Markets Drive Out
Lemmings-or Vice Versa?,” Economica, London School
of Economics and Political Science, Vol. 71, No. 284,
2004.

Hogg and Craig, 1972 Hogg, R. V., and A. T. Craig, Introduction to Mathemat-
ical Statistics, Macmillan, 1972.

Holland, 1975 Holland, J., Adaptation in Natural and Artificial Sys-
tems, University of Michigan Press, 1975.

Horvitz et al., 1992 Horvitz, E., S. Srinivas, C. Rouokangas, and M. Barry,
“A Decision-Theoretic Approach to the Display of Infor-
mation for Time-Critical Decisions: The Vista Project,”
Proceedings of SOAR-92, Houston, TX, 1992.

i
i

i
i

i
i

i
i

446 REFERENCES

Huang et al., 1994 Huang, T., D. Koller, J. Malik, G. Ogasawara, B. Rao,
S. Russell, and J. Weber, “Automatic Symbolic Traffic
Scene Analysis Using Belief Networks,” Proceedings of
the Twelfth National Conference on Artificial Intelligence
(AAAI94), AAAI Press, 1994.

Hume, 1748 Hume, D., An Inquiry Concerning Human Understand-
ing, Prometheus, 1988 (originally published in 1748).

Iversen et al., 1971 Iversen, G. R., W. H. Longcor, F. Mosteller, J. P. Gilbert,
and C. Youtz, “Bias and Runs in Dice Throwing and
Recording: A Few Million Throws,” Psychometrika, Vol.
36, 1971.

Jadbabaie et al., 2003 Jadbabaie, A., J. Lin, and A.S. Morse, “Coordination
of Groups of Mobile Autonomous Agents Using Near-
est Neighbor Rules,” IEEE Transactions on Automatic
Control, Vol. 48, 2003.

Jensen et al., 1990 Jensen, F., S. Lauritzen, and K. Olesen, “Bayesian Up-
dating in Causal Probabilistic Networks by Local Com-
putations,” Computational Statistics Quarterly 4, 1990.

Jensen, 2001 Jensen, F.V., Bayesian Networks and Decision Graphs,
Springer-Verlag, New York, 2001.

Jiang et al., 2010 Jiang, X., M.M. Barmada, R.E. Neapolitan, S.
Visweswaran, and G.F. Cooper, “A Fast Algorithm for
Learning Epistatic Genomic Relationships,” AMIA 2010
Symposium Proceedings, 2010.

Jiang et al., 2011a Jiang, X., R.E. Neapolitan, M.M. Barmada, and S.
Visweswaran, “Performance of Bayesian Network Scoring
Criteria for Learning Genetic Epistasis,” BMC Bioinfor-
matics, Vol. 12, No. 89, 2011.

Jiang et al., 2011b Jiang, X., S. Visweswaran, and R.E. Neapolitan, “Min-
ing Epistatic Interactions from High-Dimensional Data
Sets Using Bayesian Networks,” in Holmes, D. and L.
Jain (Eds.): Foundations and Intelligent Paradigms–3,
Springer-Verlag, 2011.

Joereskog, 1982 Joereskog, K. G., Systems under Indirect Observation,
North Holland, 1982.

Jurafsky and Martin, 2009 Jurafsky, D., and J. Martin, Speech and Language Pro-
cessing, Prentice Hall, 2009.

Kaelbling et al., 1998 Kaelbling, L.P., M.L. Littman, and A.R. Cassandra,
“Planning and Acting in Partially Observable Stochas-
tic Domains,” Artificial Intelligence, Vol. 101, 1998.

Kahneman and Tversky, 1979 Kahneman, D., and A. Tversky, “Prospect Theory: An
Analysis of Decision Under Risk,” Econometrica, Vol. 47,
1979.

i
i

i
i

i
i

i
i

REFERENCES 447

Karpathy and Fei-Fei, 2015 Karpathy, A., and L. Fei-Fei, “Deep Visual-Semantic
Alignments for Generating Image Descriptions,”
arXiv:1412.2306v2 [cs.CV], 2015.

Katz, 1997 Katz, E.P., “Extending the Teleo-Reactive Paradigm
for Robotic Agent Task Control Using Zadehan (fuzzy)
Logic,” Proceeding of IEEE International Symposium on
Computational Intelligence in Robotics and Automation
(CIRA’97), 1997.

Kemmerer et al., 2002 Kemmerer, B., Mishra, S., and P. Shenoy, “Bayesian
Causal Maps as Decision Aids in Venture Capital De-
cision Making,” Proceedings of the Academy of Manage-
ment Conference, 2002.

Kennedy and Eberhart, 1995 Kennedy, J., and R.C. Eberhart, “Particle Swarm Opti-
mization,” Proceedings of the IEEE Conference on Neu-
ral Networks IV, IEEE Service Center, New York, 1995.

Kennedy and Eberhart, 2001 Kennedy, J., and R.C. Eberhart, Swarm Intelligence,
Morgan Kaufmann, 2001.

Kennett et al., 2001 Kennett, R., K. Korb, and A. Nicholson, “Seabreeze Pre-
diction Using Bayesian Networks: A Case Study,” Pro-
ceedings of the 5th Pacific-Asia Conference on Advances
in Knowledge Discovery and Data Mining - PAKDD,
Springer-Verlag, New York, 2001.

Kenny, 1979 Kenny, D. A., Correlation and Causality, Wiley, 1979.

Kerrich, 1946 Kerrich, J. E., An Experimental Introduction to the The-
ory of Probability, Einer Munksgaard, 1946.

Klein et al., 2000 Klein, W.B., C.R. Stern, G.F. Luger, and D. Pless,
“Teleo-Reactive Control for Accelerator Beam Tuning,”
Artificial Intelligence and Soft Computing: Proceedings of
the IASTED International Conference, IASTED/ACTA
Press, 2000.

Koehler, 1998 Koehler, S. Symtext: a Natural Language Understand-
ing System for Encoding Free Text Medical Data, Ph.D.
dissertation, University of Utah, 1998.

Korf, 1993 Korf, R., “Linear-Space Best-First Search,” Artificial In-
telligence, Vol. 62, 1993.

Koza, 1992 Koza, J., Genetic Programming, MIT Press, 1992.

Krishnamurthy et al., 2001 Krishnamurthy, B., C. Wills, and Y. Zhang, “On
the Use and Performance of Content Distribution Net-
works,” ACM SIGCOMM Internet Measurement Work-
shop, 2001.

i
i

i
i

i
i

i
i

448 REFERENCES

Krizhevsky et al., 2012 Alex Krizhevsky, A.I. Sutskever, and, E. Hinton, “Im-
ageNet Classification with Deep Convolutional Neural
Networks,” NIPS 12 Proceedings of the 25th Interna-
tional Conference on Neural Information Processing Sys-
tems, 2012.

Lander and Shenoy, 1999 Lander, D.M., and P. Shenoy, “Modeling and Valuing
Real Options Using Influence Diagrams,” School of Busi-
ness Working Paper No. 283, University of Kansas, 1999.

Langley et al., 1987 Langley, P., H.A. Simon, G.L. Bradshaw, and J.M.
Zytkow, Scientific Discovery: Computational Explo-
rations of the Creative Processes, MIT Press, 1987.

Lari and Young, 1990 Lari, K., and S. Young, “The Estimation of Stochastic
Context-Free Grammars Using the Inside-Outside Algo-
rithm,” Computer Speech and Language, Vol. 4, 1990.

Latané, 1981 Latane, B., “The Psychology of Social Impact,” Ameri-
can Psychologist, Vol. 36, 1981.

Lauritzen and Spiegelhalter, 1988 Lauritzen, S. L., and D. J. Spiegelhalter, “Local Com-
putation with Probabilities in Graphical Structures and
Their Applications to Expert Systems,” Journal of the
Royal Statistical Society B, Vol. 50, No. 2, 1988.

Lenat, 1983 Lenat, D.B., “EURISKO: A Program that Learns New
Heuristics,” Artificial Intelligence, Vol. 21, No. 1-2, 1983.

Lenat, 1998 Lenat, D.B., “ From 2001 to 2001: Common sense and
the mind of HAL,” in Stork D.G. (Ed.): Hal’s Legacy:
2001 as Dream and Reality, MIT Press, 1998.

Lenat and Brown, 1984 Lenat, D.B., and J.S. Brown, “Why AM and Eurisko
Appear to Work,” Artificial Intelligence, Vol. 23, No. 3,
1984.

Leung et al., 2004 Leung, K.S., H.D. Jin, and Z.B. Xu, “An Expanding Self-
Organizing Neural Network for the Traveling Salesman
Problem,” Neurocomputing, Vol. 62, 2004.

Li, 1997 Li, W., Molecular Evolution, Sinauer Associates, 1997.

Li and D’Ambrosio, 1994 Li, Z., and B. D’Ambrosio, “Efficient Inference in Bayes’
Networks as a Combinatorial Optimization Problem,”
International Journal of Approximate Inference, Vol. 11,
1994.

Lifschitz, 1994 Lifschitz, V., “Circumscription,” In Gabbay, D., C. J.
Hogger, and J. A. Robinson (Eds.): Handbook of Logic
in Artificial Intelligence and Logic Programming, Volume
3: Nonmonotonic Reasoning and Uncertain Reasoning,
Oxford University Press, 1994.

i
i

i
i

i
i

i
i

REFERENCES 449

Lindley, 1985 Lindley, D.V., Introduction to Probability and Statistics
from a Bayesian Viewpoint, Cambridge University Press,
London, 1985.

Lindsay et al., 1980 Lindsay, R. K., B. G. Buchanan, E.A. Feigenbaum, and
J. Lederberg, Applications of Artificial Intelligence for
Organic Chemistry: The Dendral Project, McGraw-Hill,
1980.

Lugg et al., 1995 Lugg, J. A., J. Raifer, and C. N. F. González, “Dehy-
drotestosterone Is the Active Androgen in the Mainte-
nance of Nitric Oxide-Mediated Penile Erection in the
Rat,” Endocrinology, Vol. 136, No. 4, 1995.

Mani et al., 1997 Mani, S., S. McDermott, and M. Valtorta, “MENTOR: A
Bayesian Model for Prediction of Mental Retardation in
Newborns,” Research in Developmental Disabilities, Vol.
8, No. 5, 1997.

Manning and Schuetze, 2003 Manning, C., and Schuetze, H., Foundations of Statistical
Natural Language Processing, MIT Press, 2003.

Marcus et al., 1993 Marcus, P., B. Santorini, and M. Marcinkiewicz, “Build-
ing a Large Annotated Corpus of English: The Penn
Treebank,” Computational Linguistics, Vol. 19, No. 2,
1993.

Margaritis et al., 2001 Margaritis, D., C. Faloutsos, and S. Thrun, “NetCube: A
Scalable Tool for Fast Data Mining and Compression,”
Proceedings of the 27th VLB Conference, Rome, Italy,
2001.

McCarthy, 1958 McCarthy, J., “Programs with Common Sense,” Sympo-
sium on Mechanization of Thought Processes. National
Physical Laboratory, Teddington, England, 1958.

McCarthy, 1980 McCarthy, J., “Circumscription–A Form of Non-
Monotonic Reasoning,” Artificial Intelligence, Vol. 13,
1969.

McCarthy, 2007 McCarthy, J., From Here to Human-Level AI, Artificial
Intelligence, Vol. 171, No. 18, 2007.

McCarthy and Hayes, 1969 McCarthy, J., and P. J. Hayes, “Some Philosophical
Problems from the Standpoint of Artificial Intelligence,
Machine Intelligence, Vol. 4, 1969.

McCorduck, 2004 McCorduck, P., Machines Who Think, A. K. Peters,
Ltd., 2004.

McCulloch and Pitts, 1943 McCulloch, W., and W. Pitts, “A Logical Calculus of the
Ideas Immanent in Nervous Activity, Bulletin of Mathe-
matical Biophysics, Vol. 5, 1943.

McDermott, 1982 McDermott, J., “A Rule-Based Configurer of Computer
Systems,” Artificial Intelligence, Vol. 19, No. 1, 1982.

i
i

i
i

i
i

i
i

450 REFERENCES

McDermott and Doyle, 1980 McDermott, D., and J. Doyle, “Nonmonotonic Logic 1,”
Artificial Intelligence, Vol. 13, 1980.

McLachlan and Krishnan, 2008 McLachlan, G. J., and T. Krishnan, The EM Algorithm
and Extensions, Wiley, 2008.

Meek, 1995 Meek, C., “Strong Completeness and Faithfulness in
Bayesian Networks,” in Besnard, P., and S. Hanks (Eds.):
Uncertainty in Artificial Intelligence; Proceedings of the
Eleventh Conference, Morgan Kaufmann, 1995.

Meek, 1997 Meek, C., “Graphical Models: Selecting Causal and Sta-
tistical Models,” Ph.D. dissertation, Carnegie Mellon
University, 1997.

Metropolis et al., 1953 Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller,
and E. Teller, “Equation of State Calculation by Fast
Computing Machines,” Journal of Chemical Physics,
Vol. 21, 1953.

Meuleau and Bourgine, 1999 Meuleau, N., and P. Bourgine, “Exploration of Multi-
State Environments: Local Measures and Back-
Propagation of Uncertainty,” Machine Learning, Vol. 35,
No. 2, 1999.

Meystre and Haug, 2005 Meystre, S., and PJ Haug, “Automation of a Problem
List Using Natural Language Processing,” BMC Medical
Informatics and Decision Making, Vol. 5, No. 30, 2005.

Minsky et al., 2004 Minsky, M.L., P. Singh, and A. Sloman, “The St. Thomas
Commonsense Symposium: Designing Architectures for
Human-Level Intelligence, AI Magazine, Vol. 25, No. 2,
2004.

Minsky, 2007 Minsky, M.L., The Emotion Machine: Commonsense
Thinking, Artificial Intelligence and the Future of the Hu-
man Mind, Simon and Schuster, 2007.

Mnih et al., 2015 Mnih, V., et al., “Human-Level Control through Deep
Reinforcement Learning,” Nature, Vol. 518, 2015.

Montes de Oca et al., 2011 Montes de Oca, M.A., T. Stützle, K. Van den Enden,
and M. Dorigo, “Incremental Social Learning in Parti-
cle Swarms,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, Vol. 41, No. 2, 2011.

Morjaia et al., 1993 Morjaia, M., F. Rink, W. Smith, G. Klempner, C. Burns,
and J. Stein, “Commercialization of EPRI’s Genera-
tor Expert Monitoring System (GEMS),” in Expert Sys-
tem Application for the Electric Power Industry, EPRI,
Phoenix, AZ, 1993.

Neal, 1992 Neal, R., “Connectionist Learning of Belief Networks,”
Artificial Intelligence, Vol. 56, 1992.

i
i

i
i

i
i

i
i

REFERENCES 451

Neapolitan, 1989 Neapolitan, R. E., Probabilistic Reasoning in Expert Sys-
tems, Wiley, 1989.

Neapolitan, 1996 Neapolitan, R. E., “Is Higher-Order Uncertainty
Needed?” in IEEE Transactions on Systems, Man, and
Cybernetics Part A: Systems and Humans, Vol. 26, No.
3, 1996.

Neapolitan, 2004 Neapolitan, R. E., Learning Bayesian Networks, Prentice
Hall, 2004.

Neapolitan, 2009 Neapolitan, R. E., Probabilistic Methods for Bioinfor-
matics, Morgan Kaufmann, 2009.

Neapolitan, 2015 Neapolitan, R. E., Foundations of Algorithms, Jones and
Bartlett, 2015.

Neapolitan and Jiang, 2007 Neapolitan, R. E., and X. Jiang, Probabilistic Methods
for Financial and Marketing Informatics, Morgan Kauf-
mann, 2007.

Nease and Owens, 1997 Nease, R.F., and D.K. Owens, “Use of Influence Dia-
grams to Structure Medical Decisions,” Medical Decision
Making, Vol. 17, 1997.

Nefian et al., 2002 Nefian, A.F., L.H. Liang, X.X. Liu, X. Pi., and K.
Murphy, “Dynamic Bayesian Networks for Audio-Visual
Speech Recognition,” Journal of Applied Signal Process-
ing, Special Issue on Joint Audio Visual Speech Process-
ing, Vol. 11, 2002.

Newell and Simon, 1961 Newell, A., and H. Simon, “GPS, a Program that Simu-
lates Human Thought,” in Building, H. (Ed.): Lerenede
Automaten, R. Oldenbourg, 1961.

Newell, 1981 Newell, A., “The Knowledge Level,” AI Magazine, Sum-
mer, 1981.

Nicholson, 1996 Nicholson, A.E., “Fall Diagnosis Using Dynamic Belief
Networks,” Proceedings of the 4th Pacific Rim Inter-
national Conference on Artificial Intelligence (PRICAI-
96), Cairns, Australia, 1996.

Nillson, 1991 Nillson, N.J., “Logic and Artificial Intelligence,” Artifi-
cial Intelligence, Vol. 47, 1991.

Nillson, 1994 Nillson, N.J., “Teleo-Reactive Programs for Agent Con-
trol,” Journal of Artificial Intelligence Research, Vol. 1,
1994.

Norwick et al., 1993 Norwick, S.M., M.E. Dean, D.L. Dill, and M. Horowitz,
“The Design of a High-Performance Cache Controller: A
Case Study in Synchronous Synthesis,” Integration, the
VLSI Journal, Vol. 15, No. 3, 1993.

i
i

i
i

i
i

i
i

452 REFERENCES

Ogunyemi et al., 2002 Ogunyemi, O., J. Clarke, N. Ash, and B. Web-
ber, “Combining Geometric and Probabilistic Reasoning
for Computer-Based Penetrating-Trauma Assessment,”
Journal of the American Medical Informatics Associa-
tion, Vol. 9, No. 3, 2002.

Olesen et al., 1992 Olesen, K. G., S. L. Lauritzen, and F. V. Jensen,
“aHUGIN: A System Creating Adaptive Causal Prob-
abilistic Networks,” in Dubois, D., M. P. Wellman, B.
D’Ambrosio, and P. Smets (Eds.): Uncertainty in Arti-
ficial Intelligence; Proceedings of the Eighth Conference,
Morgan Kaufmann, 1992.

Olmsted, 1983 Olmsted, S.M., “On Representing and Solving Influence
Diagrams,” Ph.D. dissertation, Dept. of Engineering-
Economic Systems, Stanford University, California, 1983.

Onisko, 2001 Onisko, A.,“Evaluation of the Hepar II System for Di-
agnosis of Liver Disorders,” Working Notes on the Eu-
ropean Conference on Artificial Intelligence in Medicine
(AIME-01): Workshop Bayesian Models in Medicine,”
Cascais, Portugal, 2001.

Owens et al., 2016 Owens, A., et al., “Visually Indicated Sound,”
arXiv:1512.08512v2 [cs.CV], 2016.

Partridge, 1982 Partridge, B., “The Structure and Function of Fish
Schools,” Scientific American, Vol. 246, No. 6, 1982.

Pearl, 1986 Pearl, J., “Fusion, Propagation, and Structuring in Belief
Networks,” Artificial Intelligence, Vol. 29, 1986.

Pearl, 1988 Pearl, J., Probabilistic Reasoning in Intelligent Systems,
Morgan Kaufmann, 1988.

Pearl, 2000 Pearl, J., Causality: Models, Reasoning, and Inference,
Cambridge University Press, 2000.

Pearl et al., 1989 Pearl, J., D. Geiger, and T. S. Verma, “The Logic of
Influence Diagrams,” in Oliver, R.M., and J. Q. Smith
(Eds.): Influence Diagrams, Belief Networks and Deci-
sion Analysis, Wiley, 1990. (A shorter version originally
appeared in Kybernetica, Vol. 25, No. 2, 1989.)

Pham et al., [2002] Pham, T.V., M. Worring, and A. W. Smeulders, ”Face
Detection by Aggregated Bayesian Network Classifiers,”
Pattern Recognition Letters, Vol. 23. No. 4, 2002.

Piaget, 1966 Piaget, J., The Child’s Conception of Physical Causality,
Routledge and Kegan Paul, 1966.

Pinker, 2007 Pinker, S., The Stuff of Thought: Language as a Window
into Human Nature, Viking, 2007.

i
i

i
i

i
i

i
i

REFERENCES 453

Potvin, 1993 Potvin, J.Y., “The Traveling Salesperson Problem: A
Neural Network Perspective,” ORSA Journal on Com-
puting, Vol. 5, No. 4, 1983.

Pradhan and Dagum, 1996 Pradhan, M., and P. Dagum, “Optimal Monte Carlo Es-
timation of Belief Network Inference,” in Horvitz, E.,
and F. Jensen (Eds.): Uncertainty in Artificial Intelli-
gence; Proceedings of the Twelfth Conference, Morgan
Kaufmann, 1996.

Quinlan, 1983 Quinlan, J.R., “Learning Efficient Classification Pro-
cedures and Their Application to Chess Endgames,”
in Michalski. R.S., J.G. Carbonell, and T.M. Mitchell
(Eds.), Machine Learning – An Artificial Intelligence Ap-
proach, Tioga, 1983.

Quinlan, 1986 Quinlan, J.R., “Induction of Decision Trees,” Machine
Learning, Vol. 1, No. 1, 1986.

Quinlan, 1987 Quinlan, J.R., “Simplifying Decision Trees,” Interna-
tional Journal of Man-Machine Studies, Vol. 27, No. 3,
1987.

Rechenberg, 1994 Rechenberg, I., Evolution Strategies, in Zurada, J.M.,
R.J. Marks II, and C.J. Robinson (Eds.): Computational
Intelligence: Imitating Life, IEEE Press, 1994.

Reiter, 1980 Reiter, R., “A Logic for Default Reasoning,” Artificial
Intelligence, Vol. 13, 1980.

Reiter, 1991 Reiter, R., “The Frame Problem in the Situation Calcu-
lus: A Simple Solution (Sometimes) and a Completeness
Result for Goal Regression,” in Lifschitz, V. (Ed.): Ar-
tificial Intelligence and Mathematical Theory of Compu-
tation: Papers in Honor of John McCarthy, Academic
Press, 1991.

Reynolds, 1987 Reynolds, C.W., “Flocks, Herds, and Schools: A Dis-
tributed Behavioral Model,” Computer Graphics, Vol. 21,
No. 4, 1987.

Robbins, 1952 Robbins, H., “Some Aspects of the Sequential Design
of Experiments,” Bulletin of the American Mathematical
Society, Vol. 58, No. 5, 1952.

Robinson, 1977 Robinson, R. W., “Counting Unlabeled Acyclic Di-
graphs,” in Little, C. H. C. (Ed.): Lecture Notes in Math-
ematics, 622: Combinatorial Mathematics V, Springer-
Verlag, 1977.

Rosenblatt, 1958 Rosenblatt, F., “The Perceptron: a Probabilistic Model
for Information Storage and Organization in the Brain,”
Psychological Review,Vol. 65, No. 6, 1958/

i
i

i
i

i
i

i
i

454 REFERENCES

Rosenschein, 1985 Rosenschein, S.J., “Formal Theories of Knowledge in AI
and Robotics,” New Generation Computing, Vol. 3, No.
4, 1985.

Royalty et al., 2002 Royalty, J., R. Holland, A. Dekhtyar, and J. Goldsmith,
“POET, The Online Preference Elicitation Tool,” Pro-
ceedings of AAAI Workshop on Preferences in AI and
CP, 2002.

Ruhnka et al., 1992 Ruhnka, J.C., H.D. Feldman, and T.J. Dean, “The ‘Liv-
ing Dead’ Phenomena in Venture Capital Investments,”
Journal of Business Venturing, Vol. 7, No. 2, 1992.

Salmon, 1997 Salmon, W., Causality and Explanation, Oxford Univer-
sity Press, 1997.

Savage, 1954 Savage, L.J., Foundations of Statistics, Wiley, New York,
1954.

Scheines et al., 1994 Scheines, R., P. Spirtes, C. Glymour, and C. Meek,
Tetrad II: User Manual, Erlbaum, 1994.

Searle, 1980 Searle, J.R., “Mind, Brains, and Programs,” Behavioral
and Brain Sciences, Vol. 3, 1980.

Segal et al., 2005 Segal, E., D. Pe’er, A. Regev, D. Koller, and N. Fried-
man, “Learning Module Networks,” Journal of Machine
Learning Research, Vol. 6, 2005.

Shachter, 1986 Shachter, R. D. “Evaluating Influence Diagrams,” Oper-
ations Research, Vol. 34, 1986.

Shachter and Peot, 1990 Shachter, R. D., and M. Peot, “Simulation Approaches to
General Probabilistic Inference in Bayesian Networks,”
in Henrion, M., R. D. Shachter, L. N. Kanal, and J. F.
Lemmer (Eds.): Uncertainty in Artificial Intelligence 5,
North-Holland, 1990.

Shannon, 1948 Shannon, C.E., “A Mathematical Theory of Communica-
tion,” The Bell System Technical Journal, Vol. 27, 1948.

Shaparau et al., 2008 Shaparau, D., M. Pistore, and P. Traverso, “Fusing
Procedural and Declarative Planning Goals for Nonde-
terministic Domains,” Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, Chicago, IL,
2008.

Shenoy, 2006 Shenoy, P., “Inference in Hybrid Bayesian Networks Us-
ing Mixtures of Gaussians,” in Dechter, R., and T.
Richardson (Eds.): Uncertainty in Artificial Intelligence:
Proceedings of the Twenty-Second Conference, AUAI
Press, 2006.

Shepherd and Zacharakis, 2002 Shepherd, D.A., and A. Zacharakis, “Venture Capital-
ists’ Expertise: A Call for Research into Decision Aids
and Cognitive Feedback,” Journal of Business Venturing,
Vol. 17, 2002.

i
i

i
i

i
i

i
i

REFERENCES 455

Shiller, 2000 Shiller, R.J., Irrational Exuberance, Princeton University
Press, 2000.

Simon, 1957 Simon, H., Models of Man: Social and Rational, Wiley,
1957.

Sims, 1987 Sims, M.H., “Empirical and Analytic Discovery in IL,”
Proceedings of the 4h International Machine Learning
Workshop, Morgan Kaufmann, 1987.

Singh and Valtorta, 1995 Singh, M., and M. Valtorta, “Construction of Bayesian
Network Structures from Data: A Brief Survey and an
Efficient Algorithm,” International Journal of Approxi-
mate Reasoning, Vol. 12, 1995.

Spirtes et al., 1993; 2000 Spirtes, P., C. Glymour, and R. Scheines, Causation,
Prediction, and Search, Springer-Verlag, New York, 1993;
second edition, MIT Press, 2000.

Srinivas, 1993 Srinivas, S., “A Generalization of the Noisy OR Model,”
in Heckerman, D., and A. Mamdani (Eds.): Uncertainty
in Artificial Intelligence; Proceedings of the Ninth Con-
ference, Morgan Kaufmann, 1993.

Strutt and Hall, 2003 Strutt, J.E., and P.L. Hall, Global Vehicle Reliability:
Prediction and Optimization Techniques, Wiley, 2003.

Sun and Shenoy, 2006 Sun, L., and P. Shenoy, “Using Bayesian Networks for
Bankruptcy Prediction: Some Methodological Issues,”
School of Business Working Paper No. 302, University
of Kansas, Lawrence, KS, 2006.

Süral et al., 2010 Süral, H., N.E. Özdemirel, I Önder, and M.S. Turan, “An
Evolutionary Approach for the TSP and the TSP with
Backhauls,” in Tenne, Y., and C.K. Goh (Eds.): Com-
putational Intelligence in Expensive Optimization Prob-
lems, Springer-Verlag, 2010.

Sutskever et al., 2011 Sutskever, I., J. Martens, and G. Hinton,, “Generating
Text with Recurrent Neural Networks,” Proceedings of
the 28 th International Conference on Machine Learning,
2011.

Sutskever et al., 2014 Sutskever I., O. Vinyals, and Q.V. Le, “Sequence to Se-
quence Learning with Neural Networks,” arXiv.org > cs
> arXiv:1409.3215, 2014.

Szolovits and Pauker, 1978 Szolovits, P., and S.G. Pauker, “Categorical and Proba-
bilistic Reasoning in Medical Diagnosis,” Artificial Intel-
ligence, Vol. 11, 1978.

Tatman and Shachter, 1990 Tatman, J.A., and R.D. Shachter, “Dynamic Program-
ming and Influence Diagrams,” IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 20, No. 2, 1990.

i
i

i
i

i
i

i
i

456 REFERENCES

Theodoridis, 2015 Theodoridis, S., Machine Learning, Academic Press,
2015.

Tierney, 1996 Tierney, L., “Introduction to General State-Space
Markov Chain Theory,” in Gilks, W. R., S. Richard-
son, and D. J. Spiegelhalter (Eds.): Markov Chain Monte
Carlo in Practice, Chapman & Hall/CRC, 1996.

Torres-Toledano and Sucar, 1998 Torres-Toledano, J.G., and L.E. Sucar, “Bayesian Net-
works for Reliability Analysis of Complex Systems,” in
Coelho, H. (Ed.): Progress in Artificial Intelligence - IB-
ERAMIA 98, Springer-Verlag, Berlin, 1998.

Turing, 1950 Turing, A., “Computing Machinery and Intelligence,”
Mind, Vol. 59, 1950.

Tversky and Kahneman, 1981 Tversky, A., and D. Kahneman, “The Framing of Deci-
sions and the Psychology of Choice,” Science, Vol. 211,
1981.

Valadares, 2002 Valadares, J. “Modeling Complex Management Games
with Bayesian Networks: The FutSim Case Study,” Pro-
ceeding of Agents in Computer Games, a Workshop
at the 3rd International Conference on Computers and
Games (CG’02), Edmonton, Alberta, Canada, 2002.

van Lambalgen, 1987 van Lambalgen, M., “Random Sequences,” Ph.D. thesis,
University of Amsterdam, 1987.

VanLehn et al., 2005 VanLehn, K., C. Lynch, K. Schulze, J.A. Shapiro, R.
Shelby, L. Taylor, D. Treacy, A. Weinstein, and M. Win-
tersgill, “The Andes Physics Tutoring System: Lessons
Learned,” International Journal of Artificial Intelligence
and Education, Vol. 15, No. 3, 2005.

Vermorel and Mohri, 2005 Vermorel, J., and M. Mohri, “Multi-Armed Bandit Algo-
rithms and Empirical Evaluation,” European Conference
on Machine Learning, 2005.

Vicsek et al., 1995 Vicsek, T., A. Czir´ok, E. Ben-Jacob, and O. Shochet,
“Novel Type of Phase Transition in a System of Self-
Driven Particles,” Physical Review Letters, Vol. 75, 1995.

von Mises, 1919 von Mises, R., “Grundlagen der Wahrscheinlichkeitsrech-
nung,” Mathematische Zeitschrift, Vol. 5, 1919.

Williams et al., 2003 Williams, B., M. Ingham, S. Chung, and P. Elliot,
“Model-based Programming of Intelligent Embedded
Systems and Robotic Space Explorers,” Proceedings of
IEEE Special Issue on Modeling and Design of Embed-
ded Software, 2003.

Winograd, 1972 Winograd, T., “Understanding Natural Language,” Cog-
nitive Psychology, Vol. 3, No. 1, 1972.

i
i

i
i

i
i

i
i

REFERENCES 457

Winston, 1973 Winston, P., “Progress in Vision and Robotics,” M.I.T.
Artificial Intelligence TR-281, 1973.

Wright, 1921 Wright, S., “Correlation and Causation,” Journal of
Agricultural Research, Vol. 20, 1921.

Xiang et al., 1996 Xiang, Y., S. K. M. Wong, and N. Cercone, “Critical
Remarks on Single Link Search in Learning Belief Net-
works,” in Horvitz, E., and F. Jensen (Eds.): Uncertainty
in Artificial Intelligence; Proceedings of the Twelfth Con-
ference, Morgan Kaufmann, 1996.

Yob, 1975 Yob, G., “Hunt the Wumpus,” Creative Computing, Vol.
1, No. 5, Sep-Oct 1975.

Zadeh, 1965 Zadeh, L., “Fuzzy Sets,” Information and Control, Vol.
8, No. 3, 1965.

Zelle and Mooney, 1996 Zelle, J., and R. Mooney, “Learning to Parse Database
Queries Using Inductive Logic Programming,” Proceed-
ings of AAAI-96, MIT Press, 1996.

Zang et al., 2016 Zhang R., P. Isola, and A.A. Efros, “Colorful Image Col-
orization,” arXiv:1603.08511v5 [cs.CV], 2016.

i i

Index

Accountability, 172
ACRONYM, 5
Action rule, 37, 43
Advice Taker, 4
Agent

model-based, 44
planning, 47
reflex, 43
rule-based, 46
Teleo-reactive program, 73

Allele, 353
dominant, 353
recessive, 353

Alphabet, 12
Alternative, 203
Ambiguity

lexical, 421
semantic, 422
syntactic, 420

Ancestor, 150
Ant colony system (ACS), 380
Antecedent, 34
Aperiodic state, 288
Arc reversal/node reduction, 226
Argument

fallacy, 19, 62
logical, 19, 62
sound, 19, 62

Arity
of a predicate, 55

Artificial ant, 367
Artificial General Intelligence (AGI), 7
Artificial neural network, 389
Atomic proposition, 12
Attribute, 34
Augmented Bayesian network, 267
Autoclass, 332
Automated Mathematician (AM), 333
Automatic discovery, 333

Backus–Naur Form (BNF), 417
Backward chaining, 34

Backward search, 72
Bad decision/good outcome, 239
Base, 352
Bayes’ theorem, 122, 136
Bayes, Thomas, 123
Bayesian, 138
Bayesian Dirichlet equivalent uniform score,

283
Bayesian information criterion (BIC), 283,

312
Bayesian network, 6, 147, 150

dynamic, 336
embedded, 174
equivalent sample size in, 265
Gaussian, 165
hybrid, 168
inference algorithms and packages, 162
inference in, 160
model averaging and, 297

approximate, 300
parameter learning in, 261
parameters, 257
structure, 257
structure learning in

approximate, 293
constraint-based, 303
score-based, 276
software packages for, 311

Bayesian score, 95, 276, 279
assuming Dirichlet priors, 283

Behavioral finance, 385
Beliefs, 134
Binary connective, 12
Binary fission, 352
Blocks world, 5, 69
Boid, 382
Bold driver, 98
Bound variable, 55
Breadth-first tree search, 47

Candidate method, 292
Cannibal-missionary problem, 84

i
i

i
i

i
i

i
i

460 Index

Canonical base pair (bp), 352
Causal DAG, 153, 155, 177
Causal embedded faithfulness condition,

315
Causal faithfulness condition, 313
Causal graph, 155
Causal inhibition, 171
Causal learning, 312
Causal Markov assumption, 156, 312
Causal network, 146, 156, 312
Causal strength, 171
Causality, 154

and the Markov condition, 155
Cause, 155

direct, 155
CB Algorithm, 310
Cell, 352

diploid, 352
germ, 352
haploid, 352
somatic, 352

Certainty factor, 6, 116
Chain, 149
Chain rule, 128, 142
Chance node, 203, 216
Chinese room experiment, 2
Chomsky normal form, 417
Chromatid, 353
Circuit-based approach

to system design, 49
Circumscription assumption, 84
Class probability tree, 320

complete, 321
growing, 322

Clause, 34
conjunctive, 25
disjunctive, 25

Clustering, 331
Cognitive science, 4
Compelled edge, 192
Complete DAG, 188
Complete deduction system, 62
Complete set of operations, 295
Compound proposition, 12
Concept/knowledge interpretation, 431
Conclusion, 19, 34, 62
Conditional independence, 121, 129, 130
Conditional probability, 120
Configuration system, 37
Conflict resolution, 39
Conjunction, 12

Conjunctive clause, 25
Conjunctive normal form, 25
Connective

binary, 12
unary, 12

Constant risk-aversion function, 246
Context limiting, 39
Context-free grammar (CFG), 417

probabilistic, 426
Contextual interpretation, 416, 431
Contradiction, 17, 61
Convenience sample, 159
Convolutional neural network, 407
Cost function, 96
Cross validation

k-fold, 95
LOOCV, 95

Crossing-over, 353, 354
Cumulative risk profile, 236
Cycle, 149
CYK algorithm, 422

D-separation, 186
DAG model, 279
Decision, 203

versus good/bad outcome, 239
Decision analysis, 201, 204

normative, 245
Decision node, 203, 216
Decision tree, 31, 203

algorithm for solving, 205
solving, 204

Declarative approach
to system design, 48

Decreasing risk-aversion function, 246
Deduction rule, 44
Deduction system, 22, 62

complete, 62
sound, 22, 62

Deductive inference, 11
Deep learning, 7, 407
Default logic, 85
Default theory, 85
DeMorgan’s laws, 61
DENDRAL, 5
Deoxyribonucleic acid (DNA), 352
Derivation, 418
Derivation system, 21
Descendent, 150
Deterministic dominance, 237
Diagnostic system, 40

i
i

i
i

i
i

i
i

Index 461

Diploid
cell, 352
organism, 352

Direct cause, 155
Directed acyclic graph (DAG), 149

complete, 188
d-separation in, 186
head-to-head meeting in, 186
head-to-tail meeting in, 186
Markov equivalent, 191
pattern, 192
tail-to-tail meeting in, 186
uncoupled head-to-head meeting in,

192
Directed edge, 149
Directed graph, 149
Discounting, 116, 149, 159
Disjunction, 12
Disjunctive clause, 25
Disjunctive normal form, 25
Disjunctive syllogism, 22
Domain of discourse, 55, 56
Dominance, 353

deterministic, 237
stochastic, 238

Dynamic Bayesian network, 336
Dynamic influence diagram, 342

Egg, 352
EM Algorithm

MAP determination using, 270
Embedded Bayesian network, 174
Embedded faithfulness condition, 308

causal, 315
Emergent behavior, 344
Emergent intelligence, 8, 377
Entailed conditional independency, 182
Entity, 55, 56
Environment, 43
Equivalent sample size, 265
Ergodic Markov chain, 288
Ergodic state, 288
Ergodic theorem, 290
EURISKO, 333
Event, 118

elementary, 118
Evolution, 351, 354
Evolution strategies, 373
Evolutionary computation, 6, 351
Evolutionary programming, 373
Exception independence, 172

Exchangeability, 259
Existential generalization (EG), 64
Existential instantiation (EI), 65
Expectation-maximization (EM), 428
Expected lift in profit (ELP), 323
Expected utility, 203
Expected value maximizer, 231
Expected value of imperfect information

(EVII), 245
Expected value of perfect information (EVPI),

244
Experiment, 117
Expert system, 5, 30
Exploitation, 334, 354
Exploration, 334, 354
Exponential utility function, 231
Extension

of a default theory, 85

Faithfulness condition, 190, 303
and Markov boundary, 195
causal, 313
embedded, 308

Fallacy
argument, 19, 62

Feedforward neural networks, 395
Finite Markov chain, 288
First-order logic, 53
Flock, 382
Fluent, 71
Formal language, 12
Formula

valid, 60
Forward chaining, 36
Forward search, 72
Frame, 80
Frame axiom, 72
Frame problem, 71, 73
Free variable, 55
Frequentist, 132
Function symbol, 365
Fusion, 352

Gamete, 352
Gaussian Bayesian network, 165, 283
Gene, 353
General Problem Solver (GPS), 4
Generalized modus ponens (GMP), 68
Generative distribution, 284
Genetic algorithm, 354
Genetic drift, 354

i
i

i
i

i
i

i
i

462 Index

Genetic programming, 364
Geometry Theorem Prover, 4
Germ cell, 352
GES algorithm, 297
Gibb’s sampling, 292
Good decision/bad outcome, 239
Gradient descent, 98, 392

stochastic, 101
Grammar, 417
Graph

complete, 357
weighted directed, 357

Greedy edge crossover, 360
Growing the tree, 366

Haploid
cell, 352
organism, 352

Head-to-head meeting, 186
Head-to-tail meeting, 186
Hebbian learning, 4
Hidden Markov model, 339
Hidden variable, 332
Homolog, 352
Homologous pair, 352
HUGIN, 168
Human-level AI, 7
Hyperbolic tangent activation function, 406
Hyperparameter, 95

IF-THEN rule, 32, 115
antecedent, 34
clause, 34
conclusion, 34
premise, 34

Image recognition, 407
Independence, 121

conditional, 121
of random variables, 128, 130
of random vectors, 336

Inference
deductive, 11
probabilistic, 160

Inference engine, 30, 34
Inference rules, 21
Influence diagram, 216

dynamic, 342
solving, 222

Information extraction, 432
Information gain, 106
Information theory, 102

Inheritance
semantic net, 79

Inside-outside algorithm, 428
Instantiate, 159
Interpretation, 56
Irreducible Markov chain, 288

Joint probability distribution, 125
Junction tree, 162

k-day EMA, 371
K2 Algorithm, 294
K2 score, 283
Knowledge

taxonomic, 78
Knowledge base, 30, 32, 43
Knowledge based system, 5, 30
Knowledge representation, 77

certain, 77
uncertain, 145

Law of Total Probability, 122
Leaky noisy OR-gate model, 172

general formula for, 173
Learning

a decision tree, 102
deterministic models, 89
probabilistic model structure, 275
probabilistic models, 257
reinforcement, 333
supervised, 89
unsupervised, 331

automatic discovery, 333
Learning parameters in Bayesian networks

with missing data items, 266
Learning rate, 98
Legal sentence, 418
Lexical ambiguity, 421
Lexicalized PCFG, 429
Lexicon, 417
Linear activation function, 405
Linear regression

multiple, 93
simple, 91, 96

Linearly separable, 391
Literal proposition, 25
Local scoring updating, 295
Logic

default, 85
first-order, 53
nonmonotonic, 84
propositional, 12

i
i

i
i

i
i

i
i

Index 463

Logic Theorist, 4
Logic-based algorithm, 11
Logical

argument, 19, 62
equivalence, 18, 61
implication, 17, 61

Logistic regression, 100, 394
Logit function, 174
Loss function, 96

MACD, 371
Manipulation, 154

bad, 177
Marginal probability distribution, 126
Markov blanket, 192
Markov boundary, 195
Markov chain, 286

aperiodic state in, 288
ergodic state in, 288
finite, 288
irreducible, 288
null state in, 288
periodic state in, 288
persistent state in, 288
stationary distribution in, 289
transient state in, 288

Markov Chain Monte Carlo (MCMC), 286,
290, 300

Markov condition, 150
and causal Markov assumption, 312
and Markov blanket, 195
without causality, 159

Markov Decision Processes (MDP), 345
Markov equivalence, 191

DAG pattern for, 192
theorem for identifying, 192

Markov property, 338
Maximum a posteriori probability (MAP),

259, 270
Maximum likelihood estimate (MLE), 133,

258, 271
Maxout activation function, 406
MCCL, 371
Mean recurrence time, 288
Mean Square Error (MSE), 91
MENTOR, 308
Mobile target localization, 340
Model, 14, 56

in supevised learning, 90
Model averaging, 297
Model selection, 276

Model-based agent, 44
Modus ponens, 22

for first-order logic, 65
Multi-armed bandit problem, 334
Multiple linear regression, 93
Mutation, 353, 354

deletion, 354
insertion, 354
node, 372
tree, 372

Mutually exclusive and exhaustive, 122
MYCIN, 6, 115

Naive Bayesian network, 411
Natural Language Processing, 435
Natural language understanding, 415
Natural selection, 351, 354
Nearest neighbor crossover, 358
Negation, 12
Neighborhood, 295
Netica, 163
Neural Darwinism, 7
Neural network, 7, 389, 407
Neural networks, 4
Node(s), 149

chance, 203, 216
decision, 203, 216
utility, 216

Noisy OR-gate model, 170
assumptions in, 171
general formula for, 172
leaky, 172

Non-logical symbols, 54
Nondescendent, 150
Nonmonotonic logic, 84
Nonterminal symbol, 417
Normal density function, 165

standard, 165
Normal distribution, 165
Normal form, 25

conjunctive, 25
disjunctive, 25

Normative decision analysis, 245
NP-hard, 357
Nucleotide, 352
Null state, 288

Occam’s Razor Principle, 102
Occurs check

in unification, 68
Odds, 135

i
i

i
i

i
i

i
i

464 Index

One-way sensitivity analysis, 239
Ontology, 77
Operational test, 2
Order crossover, 357
Organism, 352

diploid, 352
haploid, 352

Outcomes, 118
Overfitting, 94, 108, 371

Parameter estimation, 96
Parameter learning, 257
Parameters, 257
Parent, 150
Parse tree, 416, 418
Parsing, 416

probabilistic, 426
Partial parsing, 433
Partially Observable Markov Decision Pro-

cesses (POMDP), 345
Path, 149
Perceptron, 390
Periodic state, 288
Persistent state, 288
Pheromone, 378
Plan, 47
Planning, 69, 368

using frames, 81
Planning agent, 47
Planning Domain Definition Language (PDDL),

71
Population, 118, 133, 136

finite, 133
Possible world, 14
Predictor

in supervised learning, 89
Prefix code, 104
Premise, 19, 34, 62
Principle of Indifference, 118
Priority ordering, 40
Probabilistic context-free grammar (PCFG),

426
lexicalized, 429

Probabilistic parser, 426
Probability, 118

conditional, 120
distribution, 124

joint, 125
marginal, 126

function, 118
law of total, 122

maximum a posteriori, 259
maximum likelihood estimate of, 133
meaning of, 131
odds and, 135
posterior, 137
Principle of Indifference and, 118
prior, 137
relative frequency approach to, 132
space, 118
subjective approach to, 134

Procedural approach
to system design, 48

Promedas, 174
Proposition, 12

atomic, 12
compound, 12
literal, 25

Propositional logic, 12
Prospect theory, 246
Purine, 352
Pyrimidine, 352

Quadratic regression, 94
Quality adjusted life expectancy (QALE),

213

Random matrix, 336
Random process, 133
Random sample, 133
Random sequence, 133
Random variable(s), 123

binomial, 258
chain rule for, 128, 142
conditional independence of, 129, 130
in applications, 135
independence of, 128, 130
joint probability distribution of, 125
multinomial, 260
probability distribution of, 124

marginal, 126
space of, 123

Random vector, 336
Randomized controlled experiment (RCE),

154
Recency ordering, 40
Recessive, 353
Rectified linear activation function, 397,

405
Recurrent neural networks, 407
Reduced error pruning, 108
Reflex agent, 43

i
i

i
i

i
i

i
i

Index 465

Refutation
soundness proof, 27

Regression
multiple linear, 93
simple linear, 91, 96

Regret theory, 246
Reinforcement learning, 333
Relative frequency, 132
Resolution, 27
Resolution theorem proving, 24
Risk profile, 235

cumulative, 236
Risk tolerance, 231
Robot, 37, 72

and mobile target localization, 340
ant, 367
swarm, 378

Rule
action, 43
deduction, 44
derivation, 417
disjunctive syllogism, 22
existential generalization (EG), 64
existential instantiation (EI), 65
IF-THEN, 32, 115
inference, 21
modus ponens, 22
resolution, 27
universal generalization (UG), 64
universal instantiation (UI), 63

Rule-based agent, 46

Sample
convenience, 159
random, 133

Sample space, 118
Sampling, 133

with replacement, 133
Satisfiable, 60
Scoring criterion

asymptotically correct, 284
consistent, 285

Search
backward, 72
forward, 72

Selection bias, 159
Semantic ambiguity, 422
Semantic interpretation, 416, 430
Semantic net, 78

frame, 80
inheritance, 79

Semantics, 13
Sensitivity analysis, 239

two-way, 240
Sexual reproduction, 352
SHAKEY robot, 72
Sigmoid activation function, 403
Sigmoid function, 100, 174, 403
Signature, 54
Simple linear regression, 91

determining parameters, 96
Situation, 431
Social impact theory, 385
Softmax activation function, 404
Softmax function, 404
Somatic cell, 352
Sound

argument, 19, 62
deduction system, 22, 62

Specificity ordering, 39
Sperm, 352
Standard error of coefficient, 92
Standard normal density function, 165
Start symbol, 417
Stationary, 338
Stationary distribution, 289
Stochastic dominance, 238
Stochastic gradient descent, 101
STRIPS, 72
Strong AI, 3
Structure, 257
Structure learning, 276

constraint-based, 303
score-based, 276

Subjective probability, 134
Subjectivist, 134
Supervised learning, 89
Swarm intelligence, 6, 377
Swarm robot, 378
Symbolic probabilistic inference (SPI), 163
Syntactic ambiguity, 420
Syntax, 12, 54
System design

circuit-based approach, 49
declarative approach, 48
procedural approach, 48

Tail-to-tail meeting, 186
Target

in supervised learning, 89
Tautology, 17
Taxonomy, 78

i
i

i
i

i
i

i
i

466 Index

Teleo-reactive program, 73
Template, 432
Terminal symbol, 365, 417
Test set, 94
Test set method, 94
Theorem proving

resolution, 24
Time trade-off quality adjustment, 213
Time-separable, 342
Total Turing test, 2
Training set, 94

in supervised learning, 89
Transient state, 288
Transition matrix, 287
Traveling Salesperson Problem (TSP), 357
Truth table, 14
Truth value, 13
Turing test, 2
Two-way sensitivity analysis, 240

Unary connective, 12
Uncoupled head-to-head meeting, 192
Unification, 66
Universal generalization (UG), 64
Universal instantiaton (UI), 63
Unsupervised learning, 331
Utility, 203

expected, 203
Utility function, 231

exponential, 231
Utility node, 216

Valid
formula, 60

Variable
bound, 55
free, 55

Venture capital (VC), 230

Weak AI, 3
Weak methods, 5
Well-formed string, 12
Wumpus world, 41, 69

probability in, 139

XCON, 5
XOR, 395

Zygote, 352

	Contents
	Preface
	Intro to AI
	History of Arti�cial Intelligence
	Outline of This Book

	--- Logical Intelligence
	Propositional Logic
	Basics of Propositional Logic
	Resolution
	Arti�cial Intelligence Applications
	Discussion and Further Reading

	First-Order Logic
	Basics of First-Order Logic
	Arti�cial Intelligence Applications
	Discussion and Further Reading

	Certain Knowledge Representation
	Taxonomic Knowledge
	Frames
	Nonmonotonic Logic
	Discussion and Further Reading

	Learning Deterministic Models
	Supervised Learning
	Regression
	Parameter Estimation
	Learning a Decision Tree

	--- Probabilistic Intelligence
	Probability
	Probability Basics
	Random Variables
	Meaning of Probability
	Random Variables in Applications
	Probability in the Wumpus World

	Uncertain Knowledge Representation
	Intuitive Introduction to Bayesian Networks
	Properties of Bayesian Networks
	Causal Networks as Bayesian Networks
	Inference in Bayesian Networks
	Networks with Continuous Variables
	Obtaining the Probabilities
	Large-Scale Application: Promedas

	Advanced Properties of Bayesian Nets
	Entailed Conditional Independencies
	Faithfulness
	Markov Equivalence
	Markov Blankets and Boundaries

	Decision Analysis
	Decision Trees
	Inuence Diagrams
	Modeling Risk Preferences
	Analyzing Risk Directly
	Good Decision versus Good Outcome
	Sensitivity Analysis
	Value of Information
	Discussion and Further Reading

	Learning Probabilistic Model Parameters
	Learning a Single Parameter
	Learning Parameters in a Bayesian Network
	Learning Parameters with Missing Data

	Learning Probabilistic Model Structure
	Structure Learning Problem
	Score-Based Structure Learning
	Constraint-Based Structure Learning
	Application: MENTOR
	Software Packages for Learning
	Causal Learning
	Class Probability Trees
	Discussion and Further Reading

	Unsupervised & Reinforcement Learning
	Unsupervised Learning
	Reinforcement Learning
	Discussion and Further Reading

	--- Emergent Intelligence
	Evolutionary Computation
	Genetics Review
	Genetic Algorithms
	Genetic Programming
	Discussion and Further Reading

	Swarm Intelligence
	Ant System
	Flocks
	Discussion and Further Reading

	--- Neural Intelligence
	Neural Networks & Deep Learning
	The Perceptron
	Feedforward Neural Networks
	Activation Functions
	Application to Image Recognition
	Discussion and Further Reading

	--- Language Understanding
	Natural Language Understanding
	Parsing
	Semantic Interpretation
	Concept/Knowledge Interpretation
	Information Extraction
	Discussion and Further Reading

	Refs
	Index

